Solving the Internet of Things’ Last-Mile Problem

Author
Vaidy Krishnan, Tableau Software

The Internet of Things is likely to reshape the world as we know it. According to Gartner, Inc., there will be nearly 26 billion connected devices by 2020. From wearables to home automation, to manufacturing optimization, the possibilities are immense, but so are the challenges.

Making the IoT work for the masses is more of a data challenge than a device connectivity problem. We first have to extract the data from devices then figure out what it all means. So far, the market has been focused on getting smart gadgets online. We’ve seen little innovation to help us consume all the data that these gadgets and machines collect. As a result, many IoT solutions suffer from the last-mile problem. In other words, these solutions are gathering data, but fail to help people see and understand the data they mine.

What good is data you can’t use? And if you can’t use it, why go through the trouble of collecting it? So how do we read, interpret, and understand this IoT data, be it from a smart home appliance, a wearable, or an industry-scale solution like GE’s Predix platform? We have to address four hurdles that stand in the way.


取得白皮書

Complete the form to access this and the rest of the great content on Tableau.com.


已經有 Tableau.com 帳戶? 請由此登入

Tableau 產品螢幕擷取畫面
地址

作者簡介

image

Vaidy Krishnan

Tableau Software

Vaidy Krishnan is Product Marketing Manager for Tableau Asia Pacific, based out of Singapore. In his role, Vaidy creates compelling content to help people consider new ways of seeing and understanding their data, through various marketing channels. Most recently, Vaidy was Analytics Manager at GE’s Oil & Gas business in Boston, where he was responsible for the oversight and application of commercial analytics projects. Prior to GE, he was a management consultant, helping drive performance improvement at some of the world’s largest healthcare companies.