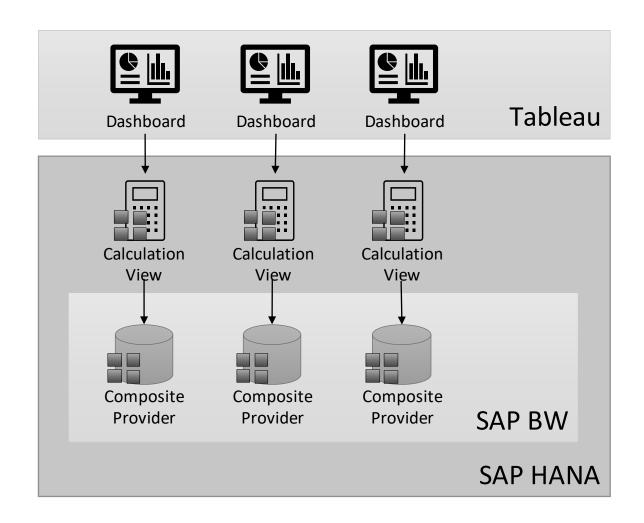


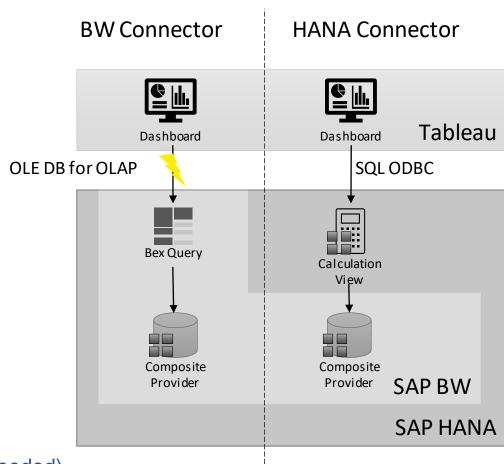
blX consulting

- Results and Learnings
- Live Demo
- Performance Best Practices
- Technical Deep Dive –
 Performance Analysis
- Q&A

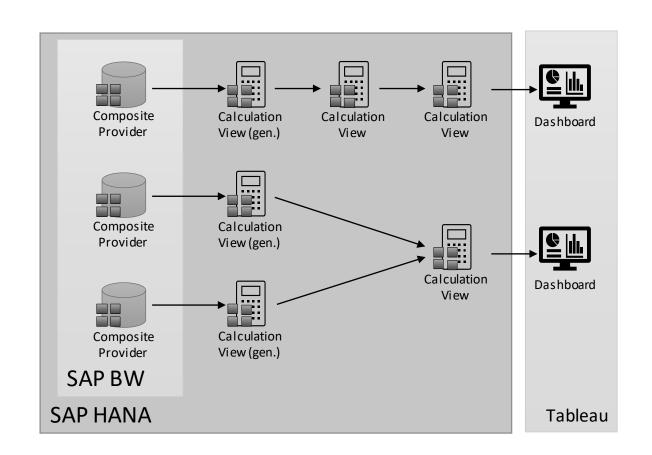


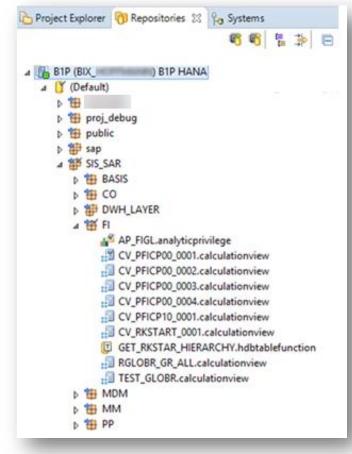
- Fast access with Tableau on Calculation Views
- No need for BW Connector
- Calculation Views as an abstraction layer for data models in BW

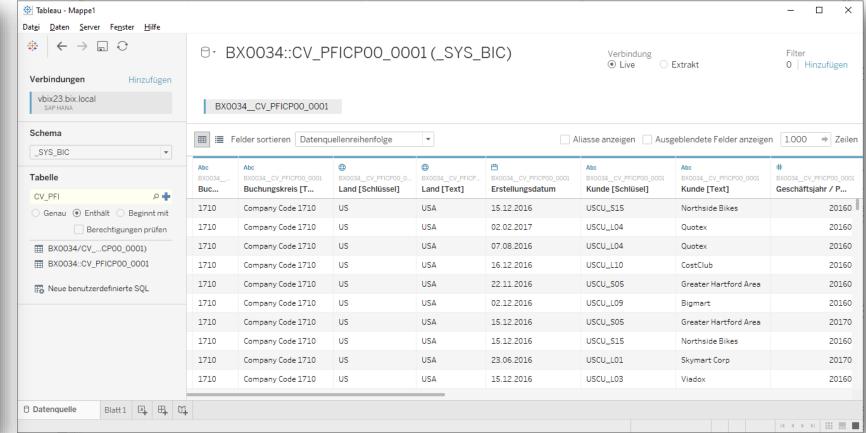
Advantages


- Best possible performance
- Best usability for the end user
- Extensibility possible
- Integration of BW analysis authorizations

OIX consulting*

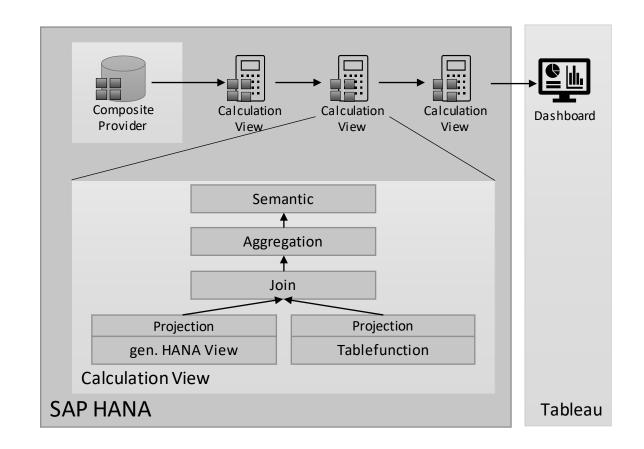

- OLE DB for OLAP interface
 - Long runtimes
 - Many Query-Features not supported
 - General restrictions of quantity (Cells, Dimensions)
 - Details in SAP Notes 323779 and 1048320
- BW as application server is often the bottleneck
- Access is carried out on data base level
 - Usage of standard ODBC driver
 - Relational access of data structures
 - Parallelization of requests
 - Set limit of memory for requests (use workload groups if needed)

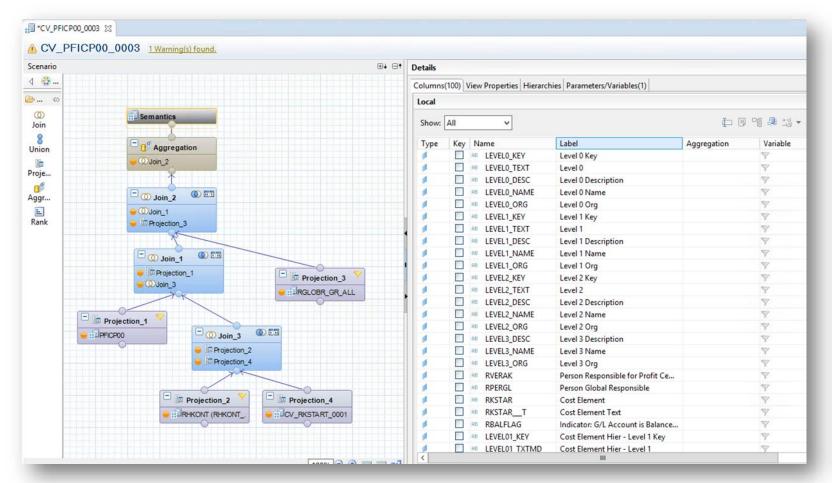


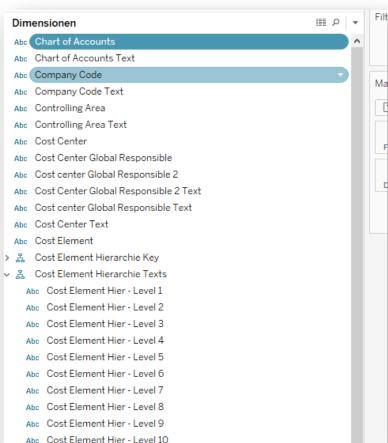


- Abstraction level offered
 - Simplification of partially extensive BW data models
 - From content model to key figure models
 - Modelling of easy to use key figures
 - Always right data independent of way of navigation
 - Additional persistence for performance issues
- Relational access offered
 - Data Blending
 - Aggregation functions
 - Restrictions regarding Cube-datasources omitted (https://help.tableau.com/current/pro/desktop/de-de/cubes.htm)

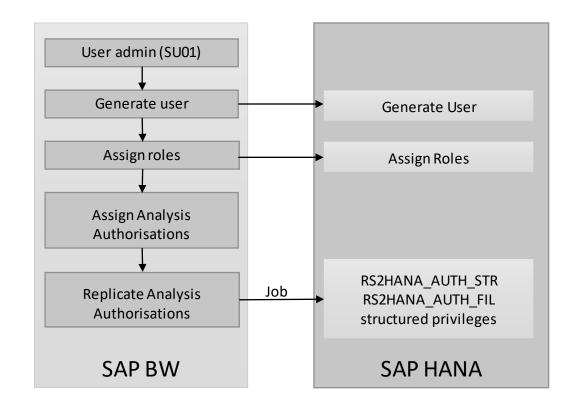
Usability

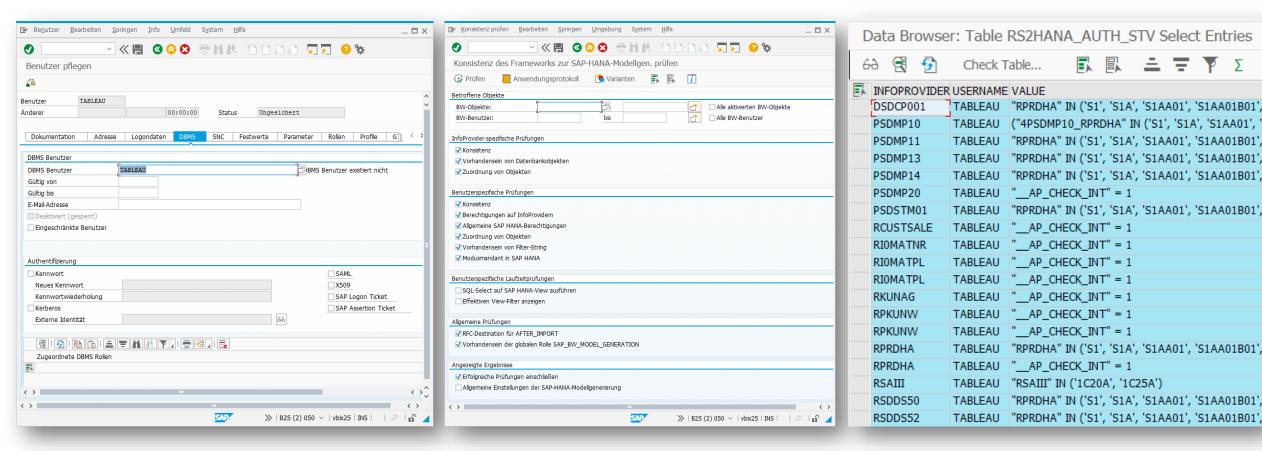




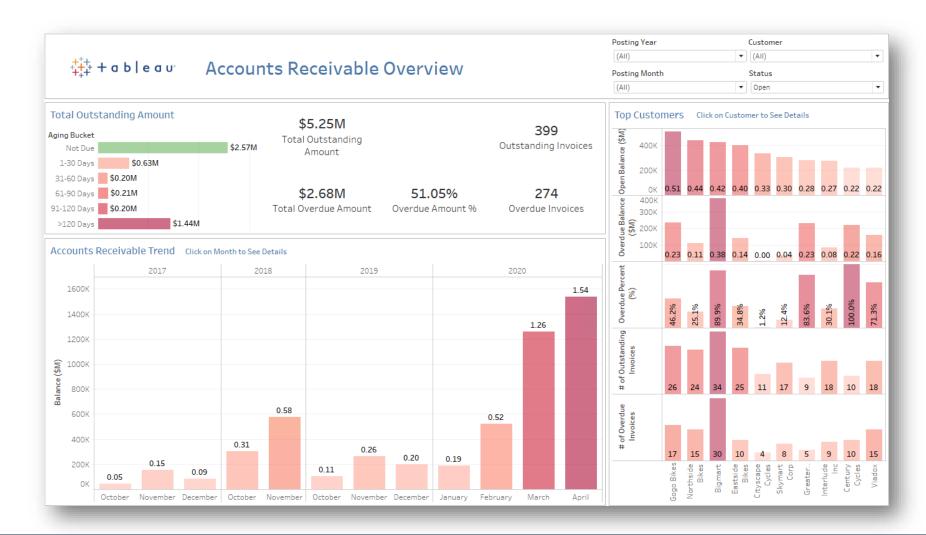

- Enable Calculation Views
 - Usage of SQL script in the form of table functions
 - Transformation of BW hierarchies in flat structures
 - Usage of unbalanced hierarchies
 - Usage of version-dependent hierarchies
 - Individual transfer towards Tableau
- Addition of data (virtual)
 - Prototypic extensions instead of remodelling
 - Subsequent transfer to ultimate model
- Robust to changes and extensions

Extensibility




BW Analysis Authorisations

- Direct ministration of users in BW
 - DBMS connection in SU01
 - Direct generation of DB-users
 - Role-assignment via BW
- Push-Down
 - BW Analysis-authorizations accessible in HANA
 - Periodical job scheduled
 - HANA users automatically restricted
- Single-Sign-On

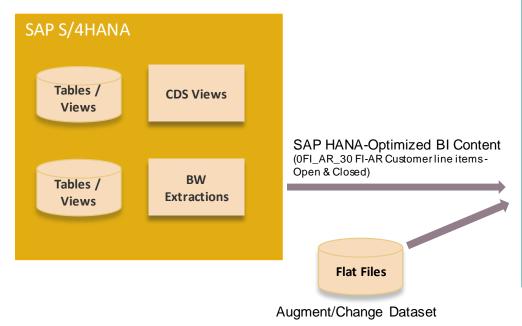

BW Analysis Authorisations

Key Takeaways

- Performance
- Usability
- Extensibility
- Integration

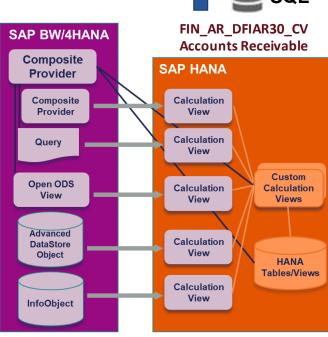
- Use the SAP HANA connector whenever it is possible
- Do not expose BW Content Data Models directly to Tableau
- Do not reuse already existing BEx Queries
- Use Calculation Views directly designed on InfoProvider and not on BEx Queries
- Limit the amount of columns as early as possible (BW or HANA layer)

Best Practices: HANA and Tableau


Tableau


- Limit the use of quick filters in Tableau If quick filters: use wildcard filters
- Limit the amount of columns in the dashboards
- Guided analytics (filter with actions | no data without selection)
- Avoid Custom SQL in Tableau if not required

HANA


- Persist data in SAP HANA (if performance is critical)
- Avoid switching calculation engines (Row, Column)
- Use HANA Star Joins when joining facts and dimension tables
- Avoid tables that are spread across multiple nodes
- Do performance analysis while developing new dashboards

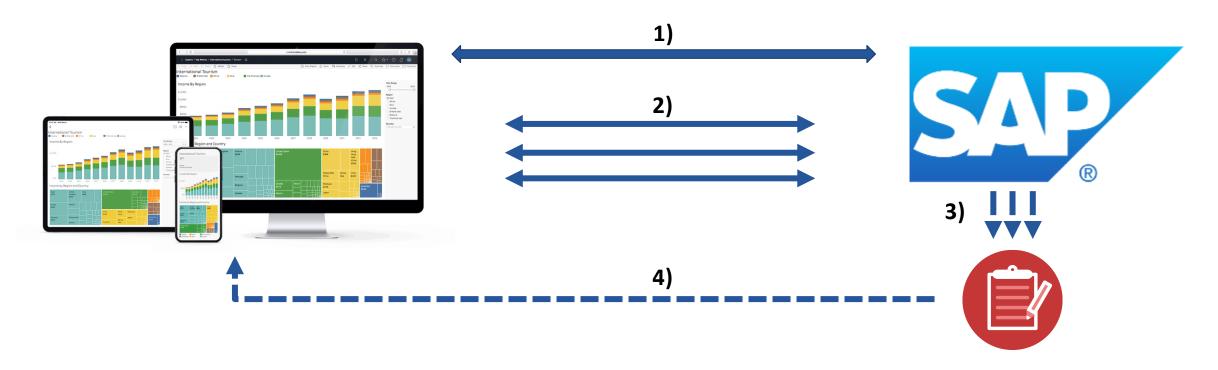
S4/HANA Analytics via BW/4HANA & SAP HANA Views

Generate/Create

Calculation Views

Performance and Workload Management for Tableau on SAP Hana

Simon Rech | Solution Engineer - Tableau



Frequent Performance / Workload Topics

- Identify workload that comes from Tableau vs. other solutions
- Identify queries with high memory consumptions / long runtimes
 - Which Tableau workbooks / users are causing these?
- Where is my runtime spent? Could it be HANA or a network issue?
- Investigate potential performance optimisations inside SAP HANA

SAP HANA Session Variables & Initial SQL

- 1) Authentication and assignment of session Variables
- 2) Workbook interactions cause queries to SAP HANA
- 3) SAP HANA uses the Session Variables information for statistics and traces
- 4) Tableau can visualise SAP HANA statistics and traces

SAP HANA Session Variables

- SAP has pre-defined Session Variables that are used in Traces / Statistics
 - Examples are APPLICATION, APPLICATIONVERSION, APPLICATIONUSER, APPLICATIONSOURCE, DEBUG_TOKEN, and TRACEPROFILE.
 - A complete list of the pre-defined session variables and their uses can be found in the "SAP HANA SQL and System Views Reference".
- Some Session Variables are automatically filled by Tableau (e.g. APPLICATION) depending on the Tableau version
- Example for Initial SQL setting Session Variables

```
SET SESSION 'APPLICATION' = [TableauApp];
SET SESSION 'APPLICATIONVERSION' = [TableauVersion];
SET SESSION 'APPLICATIONSOURCE' = [WorkbookName];
SET SESSION 'APPLICATIONUSER' = [TableauServerUser];
```


Initial SQL Parameters

The following parameters can be used in Initial SQL to set Session Variables

Parameter	Description	Example of returned value
TableauServerUser	The user name of the current server user. Use when setting up impersonation on the server. Returns an empty string if the user is not signed in to Tableau Server.	jsmith
TableauServerUserFull	The user name and domain of the current server user. Use when setting up impersonation on the server. Returns an empty string if the user is not signed in to Tableau Server.	domain.lan\jsmith
TableauApp	The name of the Tableau application.	Tableau Desktop Professional Tableau Server
TableauVersion	The version of the Tableau application.	9.3
WorkbookName	The name of the Tableau workbook. Use only in workbooks with an embedded data source.	Financial-Analysis

OIX consulting*

Without initial SQL

SQL Result select * from M_SQL_PLAN_CACHE where USER_NAME = 'SRECH' ORDER BY LAST_EXECUTION_TIMESTAMP DESC									
	HOST STATEMENT_STRING USER_NAME APPLICATION_NAME APPLICATION_SOURCE ACCESSED_TABLE_NAME.								
67	bw4hana	SELECT "tableau_FIN_AR_DFIAR30_CV"."CREDIT_AMOUNT_I	SRECH			SAPHANADB./BI0/TAC			
68	bw4hana	${\sf SELECT~"tableau_FIN_AR_DFIAR30_CV"."CREDIT_AMOUNT_I}$	SRECH			SAPHANADB./BI0/TAC			
69	bw4hana	SELECT COUNT(DISTINCT (CASE WHEN ("tableau_FIN_AR	SRECH			SAPHANADB./BI0/TAC			
70	bw4hana	SELECT ' ' AS "Calculation_145522601258242051"FROM "ta	SRECH			SAPHANADB./BI0/TAC			
71	bw4hana	SELECT EXTRACT(YEAR FROM TO_DATE("tableau_FIN_AR_D	SRECH			SAPHANADB./BI0/TAC			
72	bw4hana	SELECT TOP 32 EXTRACT(MONTH FROM TO_DATE("tableau	SRECH			SAPHANADB./BI0/TAC			
73	bw4hana	SELECT TOP 32 EXTRACT(MONTH FROM TO_DATE("tableau	SRECH			SAPHANADB./BI0/TAC			
74	bw4hana	SELECT EXTRACT(MONTH FROM TO_DATE("tableauFIN_A	SRECH			SAPHANADB./BIO/TAC			

With initial SQL

■ SQ	SQL he Result									
se	select * from M_SQL_PLAN_CACHE where USER_NAME = 'SRECH' ORDER BY LAST_EXECUTION_TIMESTAMP DESC									
	HOST STATEMENT_STRING USER_NAME APPLICATION_NAME APPLICATION_SOURCE ACCESSED_TABLE_NAME									
1	bw4hana	SELECT "tableau_FIN_AR_DFIAR30_CV"."DEBIT_AMOUNT_I	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
2	bw4hana	SELECT "tableau_FIN_AR_DFIAR30_CV"."CREDIT_AMOUNT_I	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
3	bw4hana	SELECT TO_DATE("tableau_FIN_AR_DFIAR30_CV"."CLEARIN	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
4	bw4hana	SELECT ADD_DAYS(CAST(TO_DATE("tableau_FIN_AR_DFIAR	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
5	bw4hana	SELECT "tableau_FIN_AR_DFIAR30_CV"."ACCOUNTING_DO	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
6	bw4hana	SELECT TOP 32 EXTRACT(MONTH FROM TO_DATE(ADD_DA	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
7	bw4hana	SELECT ADD_DAYS(CAST(TO_DATE("tableau_FIN_AR_DFIAR	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
8	bw4hana	SELECT "tableau_FIN_AR_DFIAR30_CV"."ACCOUNTING_DO	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				
9	bw4hana	SELECT "tableau_FIN_AR_DFIAR30_CV"."ACCOUNTING_DO	SRECH	Tableau Desktop	Initial SQL - Accounts Receivable - Live	SAPHANADB./BIO/TAC				

Relevant Traces / Caches in SAP HANA

Traces

CONFIGURE OR RUN	TO
SQLTRACE	Collect information about all SQL statements executed on the index server
PLANTRACE	Visualize the execution plans of SQL SELECT statements for in-depth query performance analysis
EXPENSIVE STATEMENTS TRACE	Record information about individual SQL statements whose execution time exceeded a configured threshold

(Source: https://help.sap.com/viewer/6b94445c94ae495c83a19646e7c3fd56/2.0.04/en-US/7e31247372fb4dd7b8c6bbac758b8c91.html)

SQL Plan Cache

Overview of the SQL execution plans and their runtime statistics in the system

Expensive Statements Trace

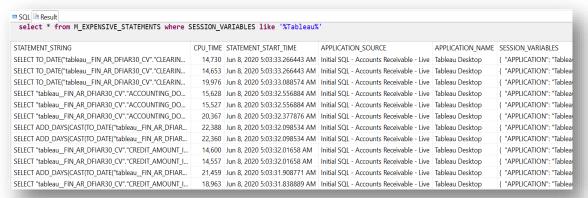
- Recommend to remain activated
 - "Due to the significant added value and the small overhead (in case of reasonable thresholds) it is recommended to activate this trace on a permanent basis." - SAP Note 2180165
- Only tracking relevant queries (runtime threshold)
- Can be used for both specific performance analysis and long-term monitoring
- Stores results in a DB table -> easy to analyze

Expensive Statements Trace

Configure the expensive statements trace by specifying the necessary optio

Trace Status:	○ Inactive ● Active	
Threshold Duration (µs):	1000000	
User Filter		
O No user filter		
Database User:	USER_XYZ	△
O Application User:	All (Default)	
Table/View:	All (Default)	
Application:	TABLEAU DESKTOP	
Passport Trace Level:	NONE	
✓ Trace parameter values	;	

Expensive Statements Trace


Tracked information a.o.:

- The type of operation during the statement execution (OPERATION)
- When the query started (START_TIME)
- How long the query took (DURATION_MICROSEC)
- The CPU time (in microseconds) to compute the statement (CPU_TIME)
- Name(s) of the objects accessed (OBJECT_NAME)
- The SQL statement (STATEMENT_STRING)
- Peak memory usage (in bytes) during the execution of the statement (MEMORY_SIZE)

Expensive Statements Trace

- Results can be queried using SQL
 - Select * from M_EXPENSIVE_STATEMENTS where APPLICATION_NAME like '%Tableau%'
- Tableau can be used for analysing the results
 - View 'M_EXPENSIVE_STATEMENTS' Schema 'SYS'

SQL Plan Cache Analysis

- Can be queried like a SAP HANA view
- Overview of the SQL execution plans and their run time statistics
- No activation needed > always available
- Insights into frequently executed queries and slow queries
- But it was not designed for performance analysis:
 - Its entries change overtime and get overwritten
 - It might not be possible to find entries related to a dedicated query
 - Shows aggregate values (AVG, MIN, MAX) instead of values specific to one execution

Suitable for understanding system workload and identifying problematic queries rather than performing specific performance analysis.

SQL Plan Cache Analysis

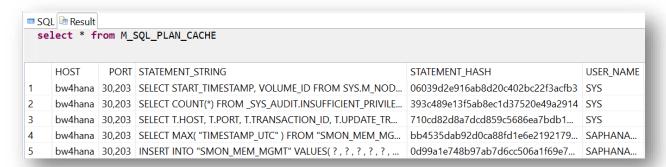
Tracked information a.o.:

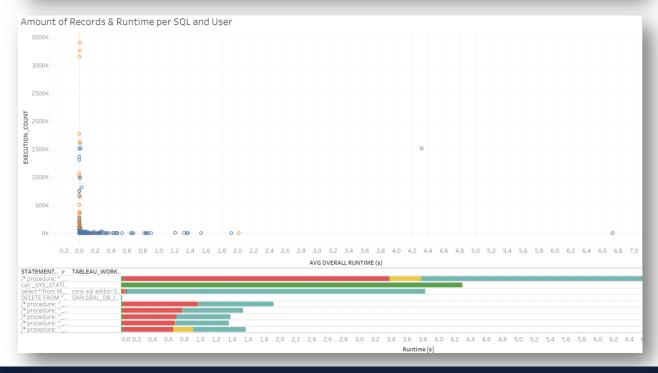
- Dominant statements (TOTAL_EXECUTION_TIME)
- Long-running statements (AVG_EXECUTION_TIME / MAX _EXECUTION_TIME)
- Memory intensive statements (AVG_EXECUTION_MEMORY_SIZE / MAX _EXECUTION_MEMORY_SIZE)
- Frequently executed plans (EXECUTION_COUNT)
- Number of records returned (TOTAL_RESULT_RECORD_COUNT)

How to read the SQL Plan Cache

https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.00/en-US/c44c125ed4ae467a903cf4bb8527facb.html

Recommendations concerning the analysis of the SQL Plan


https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.00/en-US/a6c880a896cc41d7b02aff472d11b242.html


(SAP HANA Troubleshooting and Performance Analysis Guide)

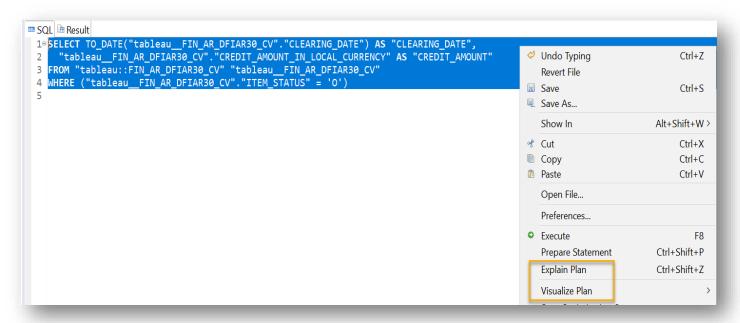
- Results can be queried using SQL
 - Select * from M_SQL_PLAN_CACHE
- Tableau can be used for analysing the results
 - View 'M_SQL_PLAN_CACHE' Schema 'SYS;

Enabling the tracking of memory usage

If the SAP HANA Memory consumption should be tracked e.g. for an Expensive Statements trace, the following parameters need to be set to 'on' in the global.ini file [resource_tracking] section:

- enable_tracking
- memory_tracking

ilter:	cape Alerts Performance Volumes Configur			ga.aas.i
Name	^	Default	System	Host - bw4han
v [] resource	ce_tracking	Delduit	System	1103C DW41Idi
enal	ble_tracking	off	• on	
feat	ure_usage_monitor_last_details	deprecated		
hos	t_job_history_granularity	500		
load_monitor_granularity load_monitor_max_samples		10000		
		100000		
mer	mory_tracking	off	• on	


Note

- In general, it is advisable to limit the maximum memory allocation per statement
- This can be achieved by setting a value for the [memorymanager] statement_memory_limit parameter in the global.ini file. A value of 10 would correspond to a limit of 10 GB.

SAP HANA Plan Explanation & Visualisation

- After analysing problematic queries they can be further analyzed using SAP HANA's Plan Explanation and Visualization.
- Paste the query in the SQL Editor, select the whole statement and the right-click menu allows to 'Explain Plan' or 'Visualize Plan'

The runtime information is based on estimates

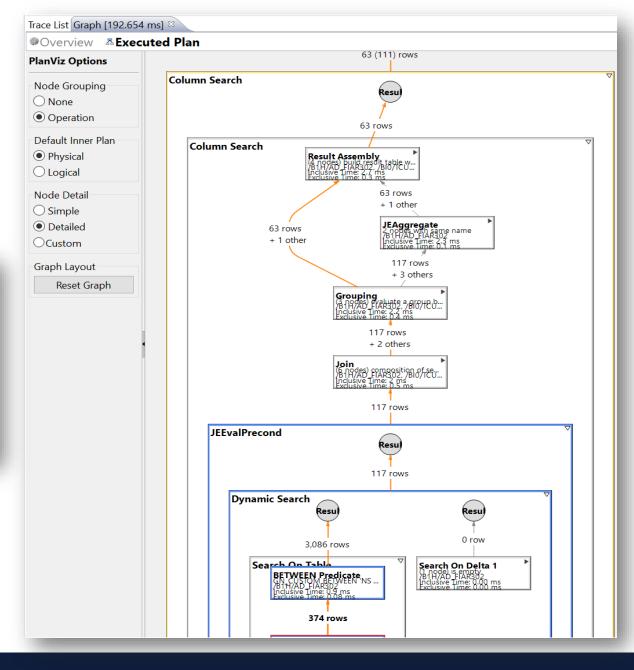
SAP HANA Explanation

 Important information that can be contained

Example output

AREA	DETAIL
OPERATION	The OPERATOR_NAME value shows the type of operation which was executed, such as joins,
DETAILS	unions, aggregations and so on. Operations depend on the engine used - essentially row engine
	or column engine. Dependencies are shown by indentation - see examples below.
ENGINE	The type of engine where an operator is executed is shown in the EXECUTION_ENGINE column:
	ROW, COLUMN, OLAP, HEX, ESX.
TABLE	Table details include table name, type, size, tables or objects which were accessed.
DETAILS	
ESTIMATED	Cost values include the estimated output row count (OUTPUT_SIZE) and the estimated time in
COST	seconds (SUBTREE_COST).

	OPERATOR_NAME	OPERATOR_DETAILS	EXECUTION_ENGINE	OUTPUT_SIZE	SUBTREE_COST
1	ROW SEARCH	CASE WHEN M.NAME = 'BLANK_LINE' THEN " WHEN M.NAME = 'INF	ROW	51,704.08267874683	23.920781202417444
2	ORDER BY	M.CHECK_NUM ASC, M.HOST ASC, M.VALUE ASC	ROW	51,704.08267874683	23.623629985412528
3	WINDOW	WINDOW FUNC: ROW_NUMBER() PARTITIONING: CC.DESCRIPTION SC	ROW	51,704.08267874683	23.475323299225547
4	HASH JOIN	HASH BUILD: RIGHT, JOIN CONDITION: C.NAME = CC.NAME	ROW	51,704.08267874683	23.215853825382872
5	MATERIALIZED UNIC	('REVISION_LEVEL','CHECK_VERSION','BLANK_LINE','INFO_LINE','EVERY	ROW	64,486.88426564908	23.141403564309815
6	MONITOR SCAN	FILTER CONDITION: M_SYSTEM_OVERVIEW.SECTION = 'System' AND N	ROW	4	0.00562217602999
7	TABLE SCAN		ROW	1	0.00000041000000
8	TABLE SCAN		ROW	1	0.00000041000000
9	TABLE SCAN		ROW	1	0.00000041000000
10	MONITOR SCAN	FILTER CONDITION: M_SYSTEM_OVERVIEW.SECTION = 'Services' AND I	ROW	4	0.00562217602999
11	HASH JOIN	HASH BUILD: RIGHT, JOIN CONDITION: M_HOST_INFORMATION.HOST	ROW	216.799999999999	0.01154428522523
12	MONITOR SCAN	FILTER CONDITION: M_HOST_INFORMATION.KEY = 'cpu_clock'	ROW	200	0.00564221849999
13	MONITOR SCAN	FILTER CONDITION: M_HOST_INFORMATION.KEY = 'os_name' AND (N	ROW	54.1999999999999	0.00562730935649


SAP HANA PlanViz

Example Results

Time		Context	
Compilation Execution	20.92 ms 192.65 ms	SQL Query System	SELECT TO_DATE("tableau_FIN_AR_DFIAR30_ bw4hana:3020
Dominant Operators Name	Execution Time	System Version System Compile Type Memory Allocated	2.00.043.00.15695605i 11.7 MByte
Basic Predicate JEDistinctAttribute Column Search	0.66 ms (0.34%) 0.25 ms (0.13%) 0.21 ms (0.11%)	Data Flow Number of Tables Used	11.7 Mbyte
Distribution	0.211113 (0.1170)	Result Record Count	
Number of Nodes	1		
Number of Network Transfers	0		

Runtime Differentiation

"Exclusive Time" = execution time of the node itself "Inclusive Time" = execution time incl. descendants

How to Create a Tableau Log Table in HANA

- Initial SQL can be used for maintaining a Tableau log that tracks Tableau usage
- Example

Log Table Creation

```
Create Column Table "SCHEMA_NAME"."TABLE_NAME"

("CONNECTION_ID" VARCHAR (100) null,

"CONNECTION_DATE_TIME" TIMESTAMP null,

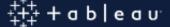
"DB_USER" VARCHAR (30) null,

"TABLEAU_SERVER_USER" VARCHAR (30) null,

"TABLEAU_APP" VARCHAR (30) null,

"TABLEAU_WORKBOOK" VARCHAR (100) null,

"TABLEAU VERSION" VARCHAR (20) null);
```


Initial SQL

INSERT INTO
"SCHEMA_NAME"."TABLE_NAME"
SELECT
CURRENT_CONNECTION,
CURRENT_TIMESTAMP,
SESSION_USER,
[TableauServerUser],
[TableauApp],
[WorkbookName],
[TableauVersion] FROM DUMMY;

Log Table Entry

CONNECTION_ID	CONNECTION_DATE_TIME	DB_USER	TABLEAU_SERVER_USER	TABLEAU_APP	TABLEAU_WORKBOOK	TABLEAU_VERSION
334865	Jun 8, 2020 4:35:24.465 AM	SRECH		Tableau Desktop	Initial SQL - Accounts Receivable - Live	2020.2

Further Information

For more information about optimisation possibilities please refer to:

- SAP HANA Troubleshooting and Performance Analysis Guide
- The examples given in the SAP HANASQL and System Views Reference
- SAP Note 2000002 FAQ: SAP HANA SQL Optimization
- SAP Note 2142945 FAQ: SAP HANA Hints
- SAP Note 2180165 FAQ: SAP HANA Expensive Statements Trace
- SAP Note 2410208 Collect Explain Plan of a Prepared Statement
- SAP released several blogs with instructions on how to use the PlanViz:
 - https://blogs.sap.com/2019/03/15/the-hana-planvisualizer-planviz-quick-and-easy/
 - https://blogs.sap.com/2018/04/29/analyzing-sql-execution-with-the-plan-visualizer-planviz/

Tableau and SAP Road Map

Recent Changes

- Multi-Node Support 10.4
- Parameter Binding & Query Cache (2018.3)
- Support for HANA 2.0 and HDI Containers (2019.3)
- HANA Leveled Hierarchies (2019.4)
- HANA 2.0 Certification (2020.2)

Subject to Change.
HIGHLY CONFIDENTIAL.

Future

- Multi-Node Support 10.4
- 2020.3: HANA table functions
- 2020.4: Parameter Binding on by default, metadata performance, performance traceability
- TC 2020: Parent/Child Hierarchy Prototype then Private Alpha

Q&A

#