
 

 

 

Prepared By:  Madeleine Corneli  

Microsoft Azure SQL Data 
Warehouse 



 

 

 

Getting started with Tableau and Azure 
SQL Data Warehouse 

What this is: a self-service guide to uploading flat files into Azure SQL data warehouse 
and operationalizing the warehouse for external connections, specifically Tableau. 
 
Who is this for: data engineers & people responsible for setting up the Azure SQL DW 
pipeline or people interested in testing out Tableau and Azure SQL DW 
 
What this isn’t: a production guide to deploying & tuning Azure SQL DW.  This is 
primarily intended for proof-of-concept purposes. 
 
How long this takes: ~ 30 minutes 
 
** Unless otherwise indicated - use the default settings in all GUIs when creating 
resources, as indicated in the linked Azure documentation 
 

1) Create new Azure SQL DW [link] 
a) For this tutorial we recommend starting with Gen2: DW500c for good 

performance.  The data warehouse can be scaled to accommodate larger 
datasets [link] 

b) Note: Azure SQL database is simply SQL Server in the cloud, Azure SQL 
data warehouse is a cloud version of SQL Server optimized for big data - 
with high performance and storage capabilities 

c) Make sure to add your client IP(s) to SQL server firewall rules as 
indicated in documentation 

2) Choose a dataset to upload   
a) To follow along with the commands in this tutorial please use the clean 

Superstore CSV included with the post which can be downloaded here 
[link].  Depending on the origin of your data it may require cleaning or 
pre-processing which can be accomplished with tools like Tableau Prep 

3) Upload dataset to Azure blob storage 
a) Create an Azure storage account [link] in the same resource group as 

your new Azure SQL DW 
i) Technically this can be anywhere as long as it's in the same 

subscription 
ii) We strongly recommend putting the storage account into the 

same region as the SQL DW (collocating) to avoid network egress 
costs 

b) For this tutorial we’re using Azure Storage Explorer to upload data [link] 
i) Depending on the structure, origin or size of your data you may 

choose to use another tool [link] 

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/create-data-warehouse-portal
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-manage-compute-overview
http://tableau-snowflake-quickstart.s3.amazonaws.com/Superstore.csv
https://docs.microsoft.com/en-us/azure/storage/common/storage-quickstart-create-account?tabs=azure-portal
https://azure.microsoft.com/en-us/features/storage-explorer/
https://docs.microsoft.com/en-us/azure/architecture/data-guide/scenarios/data-transfer


 

 

c) Open Azure Storage Explorer and connect to the appropriate subscription 
(we’re connecting using Azure environment log in - there are other 
options, like SAS keys if you don’t own the storage account) 

i) Expand the storage account you just created 
ii) Create a new Blob Container by right-clicking on Blob Containers 

iii) Upload the file(s) you want to move to SQL DW to the blob 
container 

4) Set up SQL DW for data transfer  
a) We are using SQL Server Management Studio (SSMS) [link] to connect to 

your SQL DW and transfer data. 
b) Connect to your SQL Server from SSMS 

i) Server name can be found on the SQL data warehouse resource 
page in your Azure web portal 

ii) Use SQL Server Authentication and the username and password you 
specified upon creation of the SQL Server 

iii) If you get a connection error make sure you have added your IP to 
the firewall rules (step 1c) 

c) Expand the object explorer and right click on the name of the SQL DW 
you created to open a new query editor.  To execute individual queries, 
paste them into the editor and choose Execute or hit Ctrl+E  

d) Create a staging schema - we will create our temporary external tables 
in this schema to separate them from production tables. 

CREATE SCHEMA [staging]; 

 
e) Create a Master key - this encrypts the key for your storage account so 

that people can’t browse and access the storage key.  

CREATE master key; 

 
f) Create a Credential object to access the storage account 

i) Navigate to the Storage Account you created in step 3a in the 
Azure web portal.  Copy the first key from the Access Keys tab. 

ii) Note - this is the master key to your storage account - only use 
this key for your own data uploads, do NOT share this key. 

CREATE DATABASE SCOPED CREDENTIAL AppCred WITH IDENTITY = '<Account 
Username>', SECRET = '<Storage Access Key>' ; 

 
g) Create an External data source pointing at the storage account and blob 

container you created 
i) This allows you to query any files in the referenced storage 

account.  We can keep adding additional files and easily batch-
query them, allowing for easy maintenance 

CREATE EXTERNAL DATA SOURCE SecureBlobStorage 

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


 

 

WITH 
( 
 TYPE = Hadoop, 
 LOCATION = 'wasbs://<blob 
container>@<storageaccount>.blob.core.windows.net', 
 CREDENTIAL = AppCred 
); 

 
h) Create an External File Format object  

CREATE EXTERNAL FILE FORMAT [CsvFormatWithHeaderUTF8date] WITH ( 
 FORMAT_TYPE = DELIMITEDTEXT, 
 FORMAT_OPTIONS ( 
     FIELD_TERMINATOR = ',', 
     FIRST_ROW  = 2, 
     STRING_DELIMITER = '"', 
     USE_TYPE_DEFAULT = False, 
ENCODING = 'UTF8', 
DATE_FORMAT = 'MM/dd/yyyy' 
     ) 
); 

 
i) You need a new object for each unique file format you’ll be 

uploading 
ii) This may need to be customized to reflect your specific file 

format if you are uploading something other than the Superstore 
CSV file 

(1) FIRST_ROW = 2 indicates the presence of a header row 
(2) FIELD_TERMINATOR = , indicates the type of delimiter 
(3) Specify ENCODING of your file 
(4) Specify the DATE_FORMAT of your data if different from 

the default YYYY-MM-DD [link] 
5) Load data from Azure Blob Storage into external tables 

a) Note -if you are uploading large amounts of data we recommend using a 
loader user to avoid issues loading commands [link] - the loader user 
can ingest more rows that the admin and therefore is faster for loading 
large amounts of data into the warehouse.  For this tutorial we are 
simply using the admin user. 

b) Create external table in staging schema based off file(s) - make a unique 
schema for each file type 

CREATE EXTERNAL TABLE [staging].[superstore]( 
 [rowID] [int] NULL, 
 [order_id] [varchar](150) NULL, 
 [order_date] [date] NULL, 
 [ship_date] [date] NULL, 
 [ship_mode] [varchar](150) NULL, 

https://docs.microsoft.com/en-us/sql/t-sql/data-types/date-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/load-data-wideworldimportersdw#create-a-user-for-loading-data


 

 

 [customer_id] [varchar](150) NULL, 
 [customer_name] [varchar](150) NULL, 
 [segment] [varchar](150) NULL, 
 [country] [varchar](150) NULL, 
 [city] [varchar](150) NULL, 
 [state] [varchar](150) NULL, 
 [postal_code] [int] NULL, 
 [region] [varchar](150) NULL, 
 [product_id] [varchar](150) NULL, 
 [category] [varchar](150) NULL, 
 [sub_category] [varchar](150) NULL, 
 [product_name] [varchar](150) NULL, 
 [sales] [float] NULL, 
 [quantity] [int] NULL, 
 [discount] [float] NULL, 
 [profit] [float] NULL 
  ) 
  WITH ( 
  LOCATION='/', 
    DATA_SOURCE = SecureBlobStorage, 
    FILE_FORMAT = CsvFormatWithHeaderUTF8date, 
    REJECT_TYPE = VALUE, 
    REJECT_VALUE = 0 
); 

 
i) LOCATION: specify csv file name OR say “/” - that will pull all 

CSVs in the blob container - use this only if all files have the 
same format.  Alternatively you can use folders to separate 
different file structures 

ii) Customize FILE_FORMAT to match the one created in step 4g 
iii) Customize DATA_SOURCE to match the one created in step 4f 

c) Pause here to query the tables (expand Tables and External Tables in the 
Object Explorer and right click on the external table and choose Select top 
1000 rows) and check the results 

i)  Performance may be poor since this is pulling data from storage 
blob via semantic layer & the data is not yet stored in the SQL DW 

d) Troubleshooting CREATE EXTERNAL TABLE errors 
i) “Row has exceeded maximum polybase row size limit of 

1,048,576 bytes” 
(1) Use fewer, or smaller VARCHAR types 

ii) “... java.util.IllegalFormatConversionException: d != 
java.lang.String” 

(1) Make sure you have the correct UTF encoding by opening 
in a rich text editor like VSCode 

(2) If your columns have commas in them make sure they 
have string escape characters as well 



 

 

iii) “Error converting data type VARCHAR to DATETIME” 
(1) Make sure you specify the correct date format.  See step 

4g 
iv) MalformedInputException: Input length = 1 

(1) Check that there are no unrecognized characters 
(sometimes happens with UTF8) 

6) Create internal table with appropriate distribution [link] 
a) A round robin distributed table distributes table rows evenly across 

nodes and is appropriate for a smaller dataset with no apparent joining 
key 

CREATE TABLE [dbo].[superstore_round_robin] 
WITH 
( 
 DISTRIBUTION = ROUND_ROBIN 
,   CLUSTERED COLUMNSTORE INDEX 
) 
AS 
SELECT  * 
FROM [staging].[superstore] 
; 

 
b) A replicate distribution adds a copy of the dataset to every compute node 

and is appropriate for small dimension tables in a star schema [link] 
 

CREATE TABLE [dbo].[superstore_replicate]  
WITH 
( 
 DISTRIBUTION = REPLICATE 
,   CLUSTERED COLUMNSTORE INDEX 
) 
AS 
SELECT  * 
FROM [staging].[superstore] 
; 

 
i) For replication, issue a simple query in SSMS before querying to 

trigger initial table replication 
 

Select Top 1 * from [dbo].[superstore_replicate]; 

 
c) A hash-distributed table distributes table rows across the Compute 

nodes by using a deterministic hash function  
 

CREATE TABLE [dbo].[superstore_hash] 

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-tables-distribute
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/design-guidance-for-replicated-tables


 

 

WITH 
( 
 DISTRIBUTION = HASH([customer_id]) 
,   CLUSTERED COLUMNSTORE INDEX 
) 
AS 
SELECT  * 
FROM [staging].[superstore] 
; 

 
7) Operationalize access to data & add necessary users for Tableau access 

a) For production usage don’t use a loader user as it will consume all the 
resources so no other users can query efficiently and don’t use the 
admin user since it is locked into a small resource class 

b) To support high concurrency - put all users in a group and provision 
with small to medium RC (resource class) [link] 

c) For additional control consider using static resource classes [link] 
8) Connect from Tableau and begin your analysis.  Use the credentials for the 

admin user for testing and user credentials created according to step 7 for 
production usage. [link] 

9) When you are finished make sure to clean up your Azure resource to prevent 
accumulating costs [link] 

10) Refer to Azure documentation for additional best practices [link] 

 

 

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/resource-classes-for-workload-management
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/resource-classes-for-workload-management
https://onlinehelp.tableau.com/v2019.1/pro/desktop/en-us/examples_azure_sql_dw.htm
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/create-data-warehouse-portal#clean-up-resources
https://docs.microsoft.com/en-us/azure/sql-data-warehouse/sql-data-warehouse-best-practices

