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Abstract—Dashboards remain ubiquitous tools for analyzing
data and disseminating the findings. Understanding the range
of dashboard designs, from simple to complex, can support the
development of authoring tools that enable end-users to meet
their analysis and communication goals. Yet, there has been little
work that provides a quantifiable, systematic, and descriptive
overview of dashboard design patterns. Instead, existing ap-
proaches only consider a handful of designs, which limits the
breadth of patterns that can be surfaced. More quantifiable
approaches, inspired by machine learning (ML), are presently
limited to single visualizations or capturing narrow features of
dashboard designs. To address this gap, we present an approach
for modeling the content and composition of dashboards using a
graph representation. The graph decomposes dashboard designs
into nodes featuring content “blocks’; and uses edges to model
“relationships”, such as layout proximity and interaction, be-
tween nodes. To demonstrate the utility of this approach, and its
extension over prior work, we apply this representation to derive
a census of 25,620 dashboards from Tableau Public, providing a
descriptive overview of the core building blocks of dashboards in
the wild and summarizing prevalent dashboard design patterns.
We discuss concrete applications of both a graph representation
for dashboard designs and the resulting census to guide the
development of dashboard authoring tools, making dashboards
accessible, and for leveraging AI/ML techniques. Our findings
underscore the importance of meeting users where they are by
broadly cataloging dashboard designs, both common and exotic.

Index Terms—visualization, dashboard, interaction, survey

I. INTRODUCTION

Dashboards are an essential tool for supporting data-driven
decision-making across a broad spectrum of domains, includ-
ing medicine, finance, education, and science. Their appli-
cations range from initial exploration of data to monitoring
changes in real-time, and finally as a communication tool that
can support persuasion and learning [1], [2], [3], [4], [5], [6].
A broad and carefully considered examination of a dashboard
corpus is an important precursor to many downstream visual
analytics research topics. Its results may reveal not only
the diversity of designs across application domains but also
surface common design patterns and potential pain points
that could inform the requirements of authoring tools. For
AI/ML-supported tasks such as dashboard recommendation or
interactive guidance, such an examination allows researchers
to assess the quality and suitability of the corpus to serve as
training data, as well as design filters to identify high-quality
source data to boost model performance.

Visualization research has predominantly adopted a ‘close
reading’ qualitative approach to investigate dashboard de-
signs [7], [8] – that is, a detailed analysis of a small number of
dashboards. While this approach reveals a rich design space, it
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also imposes some notable constraints. First, a manual inspec-
tion of dashboards is subjective, time-consuming, and practical
only at the limited scale of dozens or perhaps hundreds of ex-
amples – a small fraction of what exists, making it difficult to
capture the significance of dashboard design patterns. Second,
many of the dashboards from these prior studies hand-pick
examples from different sources across the internet, including
news websites, dashboard galleries, and social media. It is not
clear how representative these examples are of design practices
in general. They may instead represent idealized dashboard
designs, authored through a variety of tools at different stages
of the design process – reflecting the results of highly skilled
designers proficient in many tools rather than a more typical
creator. The representation of visualizations and dashboards
for use in ML/AI applications (e.g., VizML [9], DMiner [10])
offers an alternative approach, which relies predominately on
the extraction of features. However, in addition to largely
overlooking interactions and coordinated views, this approach
has not been explored for describing dashboard corpora to
identify and summarize design patterns. In short, existing work
on dashboard design has predominately focused on a few
hand-picked “zoos” of interesting examples (akin to Heer et
al.’s [11] “visualization zoo” of “more exotic(but practically
useful) forms of visual data representation”).

Borrowing a term and methodology from the digital hu-
manities, we propose a complementary “distant reading” [12]
approach that allows for a broader overview of dashboards,
essentially a ‘census.’ To derive a census of dashboard design
patterns, we propose a graph representation that decomposes
dashboards into “blocks” and “connections” These blocks
can describe the content of a dashboard, while connections
reveal their relationships, such as spatial proximity and inter-
activity. Our approach integrates disparate abstractions from
prior studies of visualization and dashboard corpora [9], [13],
[10], [8], [7], while also incorporating interactions and non-
visualization elements that prior work omits. We demonstrate
the utility of this schema by deriving a census of 25,620
dashboards on Tableau Public, a large and well-established
collection of dashboards that captures a myriad of design
goals and applications. Our analysis showcases the diversity
and prevalence of design patterns that are often overlooked or
underappreciated in prior studies as dashboards. For instance,
we find a tight coupling of story-driven text elements with
visualization elements with dashboards, the widespread use
of simple and canonical visualization types across dashboards
over bespoke or novel forms, and the use of interaction in
dashboards. The prevalence of these patterns, which are less
prominent in prior studies of hand-picked corpora, suggest
unmet challenges for dashboard authoring support.

We distill our findings toward applications of our schema
and the use of dashboard corpora for varied downstream
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tasks, such as dashboard authoring, accessibility, and AI/ML-
supported guidance. In summary, our research makes the
following contributions:

• A schematic representation of dashboards as node-link
graphs representing the core design elements as well as
spatial and interactive relationships between them.

• A case study using Tableau Public to create a census of
visual and interaction design patterns. We also release the
anonymized corpus of 25,620 dashboards1

• Applications and future research trajectories for dash-
board authoring tools informed by a design ‘census.’

Dashboards remain an essential tool for extracting ac-
tionable insights from data. We contribute an approach for
visualization researchers to appraise a greater diversity of
dashboard design patterns that can in turn be leveraged to
improve end-user experiences toward authoring dashboards.

II. RELATED WORK

A. Dashboards as Objects of Study

Sarikaya et al. [7] point to a disconnect between the ubiquity
of dashboards in visualization practice and their lack of
consideration in visualization study. More recent work has
sought to remedy this gap by 1) further clarifying the various
forms and goals of dashboard designers and users and 2)
codifying or testing design rules or recommendation systems
for automating aspects of dashboard design.

Exploring dashboards (and other visualization practices) is
often done through an analysis of dashboards in a particular
context of use or population of users [14]. For instance, Tory et
al. [15] explore dashboard usage among “data workers.” While
valuable, these analyses require access to both the people
and visualizations they work with and rely on qualitative and
subjective judgments of intent or goal, limiting both the scale
and generalizability of results. For instance, Sarikaya et al. [7],
Bach et al. [8], Al-Maneea et al. [16] all explore dashboards
and multiple view visualizations with an eye toward their
visual structure and topology, but rely on a manual process
of coding dashboard features and connections. These manual
inspections are valuable and afford inferences about qualitative
information that would be difficult to determine automatically.

The analysis and observation of dashboards are often per-
formed in order to compare these dashboards to existing design
guidelines or recommendations from both the academic and
practitioner communities [7], [17], [18], [19], [20], [16], [8],
[21]. For instance, Qu and Hullman [20] examine how users
attend to design inconsistencies between visualizations within
the same dashboard and translate their observations into ex-
plicit design guidelines for keeping coordinated visualizations
consistent. Kristiansen et al. [22] extend these consistency
constraints by allowing users to specify relations. Similarly,
Langner et al. [23] perform an observational study of dash-
board use and design in large display environments to inform
the design of their coordinated view system. Other dashboard
authoring or recommendation systems, especially those that
use machine learning, attempt to create meaningful layouts

1We currently provide the corpus at: https://osf.io/r5cfk

and content [24], [25], [26], [27], but rely on a substantial
training corpora of well-designed or useful dashboards.

Our research explores how we can examine dashboard
designs at scale. We integrate and extend elements of prior
research to propose an extensible and machine-readable
schematic representation of dashboard designs.

B. Analyses of Visualization Corpora

Analyses of large corpora of visualizations have been per-
formed for a variety of reasons. For instance, to describe the
flexibility of a specific tool and the habits of its users [28],
[29], [30], to create and evaluate datasets for training machine
learning models [9], [31], or to simply enumerate the sheer
diversity and structure of a design space [32], [33], [34].
While our motivations span these categories, we note specific
structures in how these corpora are collected and analyzed.

Existing corpora can be divided along three dimensions:
data collection that manual [7], [16] versus automated [9],
[31], [29], [35], [36], [37], [30], [38], annotation that is man-
ual [7] versus automated [9], [31], [38], [39] (or both [29]),
and analyzing visualizations as static [29], [9], [38] versus
dynamic [7] (i.e., interactive) objects. Each dimension involves
trade-offs in the richness, scope, and quality of analyses
supported by the annotated data. For example, automated
extraction allows for thousands of examples to be collected,
but managing the heterogeneity exhibited in massive corpora
can lead to a relatively limited set of features available for
analysis based on what extraction and annotation programs
can reliably detect en masse [29], [38]. Moreover, assessing
the quality of data in this corpus is also difficult and may
require explicit validation steps [31]. In contrast, manual data
collection and annotation can lead to richer input data and
thus a wider variety of potential analyses [7], but sacrifice
scale in return since manual data collection and annotation
involve significant expenditures of time and effort.

A notable exception occurs when a large, consistently
formatted corpus is available, enabling richer and broader
analyses. For instance, the VizML project [9] processed over
a million Plotly visualizations, creating a dataset suitable
for training deep learning models. DMiner [10] investigates
approximately 850 Tableau dashboards collected from GitHub
– similar to VizML [9], they take advantage of a common
specification, in this case, Tableau XML, to prepare their cor-
pora for a recommendation task. Both VizML and DMiner use
different approaches to represent visualizations and dashboards
by either extracting features or using a graph-based analysis.
However, these features focus on the individual visualizations
and do not capture other elements present in the dashboard.
Moreover, neither comments on the variety of visualizations
or dashboards (such as the prevalence of emergent patterns
and designs) nor do they discuss interaction.

We present a unique opportunity to analyze and share thou-
sands of dashboard designs in a consistent format amenable
to systematic, quantitative analysis. Our approach also calls
attention to an often overlooked consideration of corpora
content and its suitability for downstream research tasks.
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C. Graph-Based Analysis of Visualization Designs

Ease in authoring and analyzing visualizations is often
linked to the way that a visualization is specified. When the
initial specifications are not readily available, one could use
alternative techniques, such as image segmentation [29], [39],
[40], [41], [42], [43] to derive approximate representations
of visualizations. However, the heterogeneity of visualization
images—and thus, their approximate representations—limits
our ability to analyze them at scale. It is also hard to precisely
extract higher-level semantics such as layout and interaction
properties from images without rich metadata. In our work,
given that we are interested in the relationships that bind
discrete elements within a dashboard together, we rely on
graph-based representations for our analysis.

A number of works explore graph-based representations
of visualization and dashboard designs. For example, vi-
sualization recommendation algorithms often represent the
visualization design space as a graph, where nodes represent
specific encoding or data transformation choices and edges
reflect relationships between these design decisions [44], [45],
[46]. Dashboard designs can also be represented as a graph to
capture relationships between different elements, such as di-
rectional relationships between interactions in one element that
change the encodings or data transformations in another ele-
ment [47], [48]. Recent research from Kristiansen et al. [22],
[49] proposes a technique for content-driven graph layout for
creating multi-view visualizations, including dashboards.

VizML and KG4Vis are most similar to our research.
VizML [9] uses a feature base approach and while
KG4Vis [13] apply a graph structure for mapping dataset
properties to low-level design decisions within static visualiza-
tions. KG4Vis takes this idea one step further by computing
embedding vectors over the knowledge graphs created for
individual visualizations, producing a numeric representation
that can be compared for generating and ranking visualization
recommendations. However, these methods do not capture
relationships between multiple visualizations or non-visual
elements like interaction widgets, text, and multimedia. This
orchestration of visual, interactive, and textual elements is
what distinguishes dashboards from other genres of charts.
The generalizability of these approaches to the analysis of
dashboards at scale is yet to be demonstrated.

We extend the ideas of prior research while also demon-
strating their utility beyond single visualizations. We present
a blocks and connections representation of dashboard content
and composition that can use feature-based and graph-based
analyses to represent both the layout and interactions within
an individual dashboard and summarize these design patterns
at the level of the entire dashboard corpora.

III. DASHBOARD GRAPHS: A SCHEMATIC
REPRESENTATION OF DASHBOARD DESIGN

Here, we present a graph representation of dashboard de-
signs. We motivate the need for such a representation, define
its elements, and describe its applicability and extensibility.

A. The need for consistent dashboard design representations

To illustrate the challenges of analyzing dashboard designs,
consider Figure 1—a small slice of the diversity in dashboard
designs—which presents three dashboards that are composed
of different visual elements including (but not limited to)
data visualizations, and with different levels of interactivity.
While these examples are all derived from Tableau Public,
a dashboard can be specified programmatically using visual-
ization libraries (e.g., D3, Vega-lite, ggplot) or through direct
manipulation via authoring systems (e.g., Tableau, PowerBI,
Looker). Each of these approaches has its own mechanism
for creating individual visualizations, laying them out, and
coordinating interactions between them. To gain insights into
the design of these visualizations, it would be necessary to
examine their specification via the tool they were created with.
However, the task is onerous and has questionable value in
summarizing the dashboard’s design.

An alternative approach would be to consolidate a summary
of their designs and formalize them into a framework or design
space description—an approach adopted by prior work [7],
[8]. However, this requires human labor to construct and
organize artifacts. The manual and subjective nature of this
process makes it challenging to apply to large dashboard
corpora. We argue that there also exists a gap between the
findings from these studies and the ability to express these
design patterns in a machine-readable way, for example, as
is done with VizML [9] or DMiner [10]. Notably, even these
prior attempts to represent visualization and dashboard design
patterns in a machine-readable format have been inconsistent
and fail to provide consistent coverage of dashboard elements,
non-visualization features (e.g., text, widgets, multimedia),
interaction, and layout.

We summarize these challenges as an abstraction gap
between the low-level programmatic specifications of the
dashboard and the resulting design and higher-level emergent
patterns. Prior research, such as work by Bach [8], Hu [9],
Li [13], and Lin [10] are mid-level abstractions that emphasize
different elements of dashboard designs. We argue that these
abstractions are not interoperable, nor do they fully cover the
range of possibilities illustrated in Figure 1. For these reasons,
we propose an integrative schema that defines dashboard
designs as blocks and connections.

B. Proposed Schema: Blocks and Connections

We present a node-link (graph) representation of dashboard
designs that comprise blocks (nodes) that contain content ele-
ments and connections (edges) that capture the composition of
these elements in a dashboard. This schematic representation
integrates aspects of prior work that examines dashboard con-
tent qualitatively [8], [7], individual visualizations at scale [9],
[13], and smaller collections of dashboard corpora [50]. We
now describe these components of the node-link representation
and how it can be used to capture design patterns, including
interaction, in dashboard corpora.
Blocks represent individual content elements of a dash-
board. Blocks do not only include visualizations but can
also represent text, legends, filter widgets, and multimedia
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Fig. 1. Example dashboards are decomposed into block-connection form and reconstructed as interaction and adjacency graphs. Blocks are represented
via icons and colored by type ( � chart , f legend , X filter , text , é multimedia ). Directed edges show interactions between blocks, while
undirected edges indicate that two blocks are adjacent. Block adjacency is algorithmically computed, based upon how elements are laid out and spaced
in the dashboard (see Section IV-C). Solid links in the block diagrams and interaction graphs represent � chart → � chart interactions, and dashed
links represent X filter 99K � chart or f legend 99K � chart interactions. Since (B) has no interactive blocks, its interaction graph contains no edges.
Likewise, the adjacency graph in (C) is disconnected due to the usage of white space between blocks.

elements such as images or embedded web pages. We note that
prior research (see Section II) primarily captures visualization
elements without consideration of other elements that may
exist in the dashboard (Figure 1). The precise composition
of a block can be flexibly defined based on the desired
level of granularity. For example, a faceted chart can be
represented by a single block (as we do in Section IV) or
as multiple blocks representing each facet. Each block has a
set of properties that can be ascribed to it. All blocks contain
positional properties that capture their spatial position in the
dashboard as coordinates, size, and aspect ratio. Blocks also
contain descriptive properties based upon the content type. For
example, visualization elements can contain sets of features
described, such as those described in VizML [9]. Text or
images will contain different sets of properties (e.g., topics,
semantic aspects). Importantly, the richness of descriptive
properties can vary across elements of the same type – some
visualizations have richer features than others.

Connections capture relationships between blocks to repre-
sent their composition in a dashboard. Two of the primary
types of connections that we focus on here are layout and
interaction. Layout considers the position of blocks in a
dashboard. We can establish a connection if blocks share a
common edge or overlap spatially (e.g., the bar chart on the
left in Figure 1A is adjacent to all other charts, the text block
on the bottom-right corner in Figure 1B is overlain on the bar
chart). Interactions with one block that influence others (e.g.,

cross-filtering) establish interaction connections. Just as with
blocks, additional type-specific properties can be utilized to
capture supplemental information, such as the interaction type
(e.g., filter or highlight). Other types of connections can be
considered, for example, shared dimensions across elements,
such as a data attribute used across multiple visualizations and
referenced in text elements.

We now describe how blocks and channels can be
organized into one or more graphs that represent the
design of a dashboard. Here, we propose the use of two
graphs to represent layout and interaction connections between
a common set of nodes. The adjacency graph is an undirected
graph that codifies the spatial layout blocks of a dashboard
according to their positional properties and connections. The
interaction graph is a directed graph showing how blocks
influence each other through interaction connections. These
two graphs can be jointly analyzed for a holistic analysis of
design patterns [51]. While it is technically possible to repre-
sent multiple types of connections on a single graph, including
layout and interaction, we recommend against this for the
following reasons. First, interactive elements have directions,
and omitting them can result in a loss of information. For
example, prior qualitative research [8], [43] presents design
patterns like ‘drill-down,’ which can be identified by proper
consideration of interaction directionality. Second, edges can
have different meanings, and rather than overloading edge
properties, it can be more useful to represent them separately.
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Prior work uses a single graph because they model just
one type of connection between dashboard elements (e.g.,
DMiner [10]) or model something unrelated to dashboard
design (e.g., KG4VIS [13], VizML [9]).

C. Leveraging Dashboard Graphs for Distant Reading

We now describe the ‘distant reading’ affordances enabled
through a blocks and connections lens of dashboard patterns.

Blocks and connections enable a consistent decomposition
of dashboard design. In Figure 1, we show how three
different types of dashboards are represented using the block
and connections representation. Figure 1A displays a classic
multiple coordinated views style of a dashboard for interactive
exploration of cancer treatment statistics. Figure 1B showcases
a single-use plastic and its impact on the ocean. It is an
example of using additional elements besides visualizations.
Finally, the dashboard in Figure 1C displaying data on coffee
beans around the world shows the diversity of blocks and con-
nection types. By applying our schema, we can quickly spot
and compare several pertinent design considerations between
these different dashboards. For example, Figure 1A and 1C
have many interactions between elements, while Figure 1B
has none. Moreover, the types of interactive connections (cross
filtering between visualization (→) vs filtering via widgets
(99K)) are different between these two examples. Figures 1B
and 1C have distinct cliques, grouping common information,
whereas Figure 1A does not. In aggregate, these kinds of
assessments establish design patterns and their prevalence.

Blocks and connections are flexible and extensible. By
focusing on the core elements of dashboards and how they
relate to one another, our schematic representation generalizes
to the most common dashboard designs

Our approach uses blocks and connections to represent
dashboards in a way that is independent of how these el-
ements were created. This method is versatile, capturing a
wide range of design elements, including visualizations, text,
and even non-visual elements like web pages. It applies to
any dashboard, regardless of whether it was manually de-
signed, automatically generated, or programmatically specified
using visualization language (Figure 2). For dashboards in
other formats, such as print, alternative techniques like image
segmentation [52], [40], [41], [43] can be used to identify
elements. The strength of our schema lies in its ability to
provide a consistent representation across different tools.

Enabling scalability for large dashboard corpora. Graph
data structures offer numerous methods for scaling the analysis
of large corpora. Prior analyses of dashboard corpora have
not presented the design patterns of dashboards in a way
that allows us to leverage methods for scaling the analyses
of corpora. Still, a rate-limiting factor is the data preparation
necessary to convert bespoke representations of dashboards, be
they images or code for different programming languages, into
a graph schema. In Section IV, we demonstrate this process
using Tableau Public, with our graph schema serving as the
target for data preparation. Our analysis in Section V then
highlights insights into dashboard design patterns.

Adjacency Graph

Interaction Graph

Fig. 2. An example of interaction and adjacency graphs extracted from a
dashboard specified using Vega-Lite. Such graphs can be used to collectively
analyze dashboards agnostic of creation methods or tools.

IV. CASE STUDY: A CENSUS OF TABLEAU PUBLIC

In this section, we apply the blocks and connections graph
schema to generate a census of a dashboard corpus derived
from Tableau Public. We define a census as a survey of a
dashboard corpora. Thus, our goals are descriptive in nature.
We describe our process for deriving and analyzing blocks and
connections, as well as the attendant adjacency and interaction
graphs. We describe layout and interaction design patterns that
we observe and their prevalence.

A. Motivation and Research Questions

Surveying user-created artifacts can provide valuable in-
sights into what information is most important to users,
how they represent this information, and how they organize
it. A survey can also suggest gaps in support for further
investigation and follow-up. In this case study, we survey
dashboard artifacts derived from Tableau Public 2, a well-
established platform that supports the authoring and dissem-
ination of dashboards. In total, it comprises approximately 5
million workbooks created over a 14-year period. The full
workbook corpus represents a wide range of uses across
multiple domains, including public health, finance, journalism,
and others. Moreover, it attracts a wide variety of end-users,
from students to journalists to data professionals, and captures
dashboard designs ranging from complex and interactive to
simplistic and static. In addition to the diversity of dashboard
patterns, the choice of Tableau Public is also pragmatic. Like
prior research [9], [10], we can make use of a common spec-
ification format to simplify the processes of deriving blocks,
connections, and their type-specific properties or features. In
Section III-C we provide an example of how dashboards
specified with different tools can be analyzed once they are
translated into our schematic representation.

We derive a census and present an analysis to answer the
following research question on dashboard designs:

2https://public.tableau.com/app/about
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• RQ1: What constitutes a visualization “block” within
dashboards and what are the spatial relationships between
visualization “blocks” and other types of “blocks”?

• RQ2: Is interactivity common in dashboards, and are
there common patterns of interactions between “blocks”?

• RQ3: Can we detect and characterize high-level dash-
board design patterns?

The first two research questions aim to provide a descrip-
tive overview of the composition and arrangement of design
elements within a dashboard. We place so-called visualization
“blocks”’ at the center of our analyses and seek to get an
overview of what other design elements appear alongside them
(e.g., text, multimedia) and how they influence each other (e.g.,
cross-filtering). The third research question examines to what
extent these individual dashboard designs can be clustered to
reveal design patterns and their prevalence.

B. Preparing the Corpus
Analyzing the full corpus of 5 million workbooks is in-

feasible. The primary reason is that workbook specifications
have changed over time, impacting how visualizations and
dashboards are defined. Workbooks can also be inaccessible
due to user-set permissions or deprecation. Moreover, not
all workbooks contain dashboards, and among those that do,
many can be low quality. We describe winnowing the corpus
to arrive at a subset for our dashboard census in Figure 3.

1) Winnowing: From the total corpus of 5 million work-
books, a total of 1,342,794 workbooks (∼25% of all work-
books on Tableau Public) had been published or recently up-
dated to conform to a contemporary Tableau work version; this
addresses the issues of older workbooks. Users can create one
or more dashboard objects within a Tableau workbook. Using
Tableau’s definition, only 150,276 (11%) contained at least one
dashboard. An initial exploration of these dashboards revealed
that many were very low quality – often containing a single
visualization (typically a just bar chart). We hypothesize that
these dashboards may represent just trial and error exploration
of using the Tableau Public platform.

To increase the likelihood of higher-quality dashboards, we
used page views (how often a dashboard is viewed by someone
on the internet) as a surrogate metric. We observed that the
distribution of total impressions across the 150,276 workbooks
was left-skewed with a heavy tail with values ranging from just
one impression per workbook to over 32 million; impressions
did not strongly correlate with the publication date. Given this
distribution, we elected to sample the top 10% of workbooks
based on impressions (≥42 impressions), yielding a set of
15,090 workbooks that contained 42,951 Tableau dashboards.

2) Extracting Valid Dashboards: We opted to further limit
the corpus to dashboards that had two or more visualizations
elements, allowing us to enhance the possibility of multiple
coordinate views. Applying this criterion resulted in a final set
of 25,620 dashboards that fit prior definitions of the term as
commonly used in visualization research (e.g., “a visual data
representation structured as a tiled layout of simple charts
and/or large numbers” [7]). We provide the anonymized
version of this dataset at https://osf.io/r5cfk

5M
workbooks

~1.3M 
workbooks

15,090
workbooks

42,951
dashboards

25,620
dashboards

Matches minimal 
required Tableau version

Top 10% of workbooks 
by impressions

Two or more 
visualizations

Fig. 3. An overview of the dashboard winnowing process

C. Deriving Dashboard Block and Connection Graphs

We now describe how we extracted and defined blocks and
connections from existing Tableau workbook specifications.

1) Overview of Workbook Specifications: Workbooks are
XML documents that, among other things, contain speci-
fications for visualizations and dashboard elements. Within
Tableau, individual data visualizations are constructed in
worksheets by dragging and dropping dataset attributes
onto so-called “shelves” (i.e., row, column) or to specific
encoding channels (i.e., color, size, etc.). A visualization is
automatically suggested or user-specified by selecting a mark
type. Workbooks can contain one or more worksheets.
A dashboard is composed of one or more worksheets that
can be arranged in a grid (default) or fluid layout. Regardless
of the layout, all dashboard content is captured as a zone.
The contents of a zone need not be a visualization but
could also contain text, images, or layout elements of the
dashboard. Finally, a user can specify actions that add
interactivity between dashboard zones, including highlighting,
(cross-)filtering, and page navigation.

2) Detecting Blocks: We analyze workbook dashboards,
not individual sheets, to define and extract blocks. Specif-
ically, we parse the zone objects to derive five block types:
� charts containing visualizations, X filters containing
widgets like dropdown menus and sliders, f legends dis-
playing data mappings for graphical encodings like size and
color, text blocks including the dashboard title, caption,
or additional commentary, and finally, é multimedia blocks
containing images or embedded web pages.

The � chart block type links to the original worksheet that
describes the data visualization, which we use to extract the
visualization type (e.g., bar chart, map, scatterplot, treemap,
Sankey diagram) from the specified marks (e.g., bar, line,
circle) and encodings (e.g., row, column, color). We capture
additional properties of the block, such as its spatial coordi-
nates in a dashboard and the data attributes for visualizations.

3) Deriving Layout Connections: We establish layout con-
nections between blocks by determining their spatial proxim-
ity and adjacency within a dashboard. We first construct a
bounding box around each block from its spatial coordinates
and size (width, length). Whether a dashboard uses a grid or
floating layout affects how we establish whether two blocks
are adjacent. In grid layouts, blocks can be placed side-by-
side, either above, below, or on either side of another block.
In floating layouts, the position of a block is more flexible,
and blocks can be placed on top of each other. We enumerate
all pairs of blocks and classify into four configurations:

• Partial Overlap. In a floating layout, two blocks may
partially overlap, but neither block is contained entirely
within the other.
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Interaction Graph

Adjacency Graph

nodes: 6
nodes_chart: 2
nodes_text: 1
nodes_legend: 1
nodes_multimedia: 1
nodes_filter: 1
…
inter_num_edges: 4
inter_hops_mean: 1
inter_indegree_mean: 0.67
…
adj_num_edges: 7
adj_hops_mean: 1.27
adj_clique_count: 3
…
(22 features)

A B C D E

...
<dashboard name=“…”>
<zones>
<zone type=“color” 

x=0 y=0 …>
...
</zone>
<zone type=“sheet” 

x=0 y=20…>
...
</zone>
...
</zones>
</dashboard>
...

Fig. 4. An overview of the feature extraction process. Given a Tableau dashboard (A), we parse the underlying XML specification file (B) to detect the
different blocks and connections between blocks (C). We then model two graphs depicting the interactive and spatial configurations of the dashboard (D).
From these graphs, we extract 22 features that we use for our analyses (E).

• Containment. In floating dashboard layouts, one block
can be contained entirely within another. For example, a

text block may be contained entirely with a � chart
block when it is used to annotate an outlying mark in the
data visualization. In this scenario, the coordinate range
of one block entirely overlaps with its pair.

• Adjoining. Primarily, in grid layouts, two blocks can share
an edge when adjacent to one another (e.g., two � chart
blocks containing different visualization types could be
placed next to one another). Compared to partially over-
lapping blocks, these adjoining configurations have very
limited coordinate overlap, often a few pixels, and require
separate treatment to be accurately detected.

• Non-adjacent. A pair of blocks were established not to
be adjacent as they shared no related spatial coordinates.

To allow for flexibility in determining adjacency, we use a
tolerance criterion of 10 pixels that allows two blocks to be
positioned a very small distance apart (no shared coordinates)
but still be considered adjoining.

4) Deriving Interaction Connections: Finally, after detect-
ing the dashboard blocks, we extract actions from the XML
specification to define interaction connections between blocks.
Each action provides the interaction type (e.g., filter, highlight)
as well as the source and target blocks in the dashboard
that we use to record connections. The action specifica-
tion establishes whether there exists cross filtering between
blocks that contain visualizations ( � chart→� chart ), or
visualization is filtered by another type of block, for ex-
ample, a filter ( X filter 99K � chart ) or a legend widget
( f legend 99K � chart ).

5) Constructing Adjacency and Interaction Graphs: Hav-
ing extracted blocks and establishing the structure of their
layouts and interactions, it is then simple to construct the
adjacency and interaction graphs. In both of these graphs, the
blocks are nodes. In the adjacency graph, undirected edges
between these nodes are formed when pairs of blocks have
either partial overlap, containment, or adjoining adjacency. In
the interaction graph, edges are directed and formed between
nodes where some interaction has been established between
blocks. In both graphs, we check whether there exist duplicate
edges and self-loops and remove them.

D. Methodology for Deriving a Census

The graph representation provides a consistent description
of dashboards that we can use to conduct our census – much
like a common set of questions is used to conduct a census of
human populations. Moreover, much like a census of people
we can aggregate over individual results to get an overview of
a population, or in our case a dashboard corpora.

1) Census Summaries via Descriptive Statistics: To address
RQ1 and RQ2 we conduct a descriptive statistical analysis. We
enumerate the total number of blocks and block types across
all dashboards and describe their distribution (via median and
mode). We also summarize the co-occurrence of block types
within a dashboard. We do so by applying a clique-detecting
algorithm to the adjacency graphs of each dashboard. We
then enumerate and sort commonly occurring cliques by their
prevalence. We also apply descriptive statistics to understand
the extent of interactivity in dashboards and the prevalence of
interaction between visualizations and other types of blocks.

Having a descriptive overview of the blocks has several
uses. First, it can be used to identify common and recurrent
structures. These can represent design patterns that multiple
users find useful because they either independently arrive at
the same choice or borrow it from others. Second, by focusing
on prevalence, we can see the diversity of dashboard content
via blocks. Low diversity may signal pain points. Finally,
understanding different patterns and their diversity can enable
judgments on the suitability of the corpus, or some subset of
it, for downstream tasks.

2) Summarizing Design Patterns via Cluster Analysis: We
also explored whether there were emergent dashboard design
patterns (RQ3). Specifically, we used the features derived from
the graph representations (Section IV-D) to perform an unsu-
pervised cluster analysis using the hierarchical density-based
clustering (HDBSCAN) [53] algorithm. In the supplemental
materials, we provide more details on our choice of clustering
algorithm (i.e., the choice of HDBSCAN vs K-means) and a
sensitivity analysis for our parameter choices.

Ahead of clustering, we derived a set of 22 features from
the properties of nodes and the topological structures of the
adjacency and interaction graphs, summarized as follows:

• Descriptive Features. The number and the types of blocks
within both the adjacency and interaction graphs are
identical, allowing us to extract a common set of features
from both. These features include the total number of
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blocks in each graph and the presence of specific block
types. We use one-hot encoding to represent the presence
(and absence) of block types. We standardize the total
number of blocks by the mean degree, by its mean, and
by unit variance (standard scaling). We also summarize
the total number of edges and the mean degree of nodes
and apply the standard scaling transform.

• Adjacency-Specific Features. We derived features that add
context to the spatial layouts. For all pairs of blocks in
a graph, we compute the average shortest path. As an
additional proxy of layout complexity, we examine adja-
cency graphs for the presence of one or more maximal
cliques and, when detected, compute the average size of
all cliques. We apply the standard scaling transformation
to the path lengths, number of maximal cliques, and mean
clique size.

• Interaction-Specific Features. For the interaction graph,
we compute the average in-degree and out-degree of
the nodes, also applying a standard scaling transfor-
mation. We tabulate the presence of the three edge
types ( X filter 99K � chart , f legend 99K � chart and
� chart→� chart ) that describe the interactive rela-

tionships between two blocks; these edge types are also
one-hot encoded.

There are a variety of different features that can be derived
to provide a different or simply more nuanced lens of visu-
alization design patterns. For example, VizML [9] presents a
list of visualization-specific features that we could have used
here. The features we have chosen emphasize the topological
characteristics of the adjacency and layout graphs. We argue
this is more reflective of the level that design patterns are
explored in prior qualitative research [8], [7]. However, by
making our dataset and analysis available, others may derive
alternative analyses that answer different questions.

V. RESULTS

In this section, we provide an overview of what our census
reveals, according to the descriptive statistical analysis and
feature-based unsupervised clustering. We present these results
in accordance with our research questions.

A. Content and Composition of Dashboards

Addressing RQ1, we examine the visual composition of
dashboards focusing on blocks and their spatial relationships.

1) What are the visual components of a dashboard?:
We identified a total of 250,794 blocks across the 25,620
dashboards. The number of blocks per dashboard ranged from
2 to 267 (median: 8, mode: 4). We observed that 121,068 out
of 250,794 blocks (49%) were � charts , followed by 53,267

text blocks (21%), and subsequently X filter (36,472 or
15%), f legend (22,446 or 9%), and é multimedia (17541
or 7%). We note the importance and centrality of text and
� charts as the building blocks of dashboards: together, over

70% of the blocks in our analysis were one of these two block
types. Figure 5A shows these results in detail.

For the � chart blocks, we also examined the distribution
of visualization types across dashboards. We found that bar
charts were the most common visualization type, appearing
in 15,392 out of 25,620 (60%) dashboards. The next most
frequently used charts were line charts (n=6,524; 25%), maps
(n=6,454; 25%), and finally, tables (n=6,154; 24%). Besides
other simple chart types (e.g., scatterplots, bar charts), there
were also instances of more bespoke visualizations, such as
Sankey diagrams and waterfall charts, but they were present
in only 116 dashboards (<0.5%). These findings show that
only a very small subset of our corpora constitute sophisticated
designs that are often explored in ‘close reading’ of dashboard
corpora. Our census suggests that authors generally create very
simple dashboards constituting two or three simple charts.

Considering the distribution of blocks and block types
across dashboards, we can derive several important takeaways.
First, text plays a prominent role in the construction of dash-
boards. Note that text related to titles or axes labels of visual-
izations are retained within a � charts block; thus text
blocks are deliberately added to include additional informa-
tion. The amount of text and the number of text blocks
was highly variable amongst dashboards. Another finding was
the high prevalence of multimedia elements, primary images,
that accompany dashboards. Images are often contextually
related to the dashboard content. It is noteworthy that prior
research on dashboard designs [7], [8] and recommendation
algorithms [10] emphasize what we would call � charts
blocks to the exclusion of other widely used types.

2) What are common structural relationships between vi-
sual components in a dashboard?: We analyzed the ad-
jacency graphs for the 25,620 dashboards to identify po-
tential design patterns around block layouts. The graphs
had 2-267 nodes (median: 8, mode: 4) and 0-4926 edges
(median: 11, mode: 3). For each graph, we extracted the
list of all maximal cliques, capturing the block type for
each node in a clique (e.g., {� chart −� chart −� chart },
{� chart − X filter }, {é multimedia }). Aggregating these
maximal clique patterns across all graphs, we found a total
of 1,430 unique block patterns. The smallest-sized cliques
contained just 2 blocks, and the largest contained 60, and
the median clique size was 9. The most frequently occurring
clique patterns contained just two blocks, typically including
a � chart and one of the other block types; a summary of
the most frequently occurring patterns is in Figure 6A.

Focusing on � chart blocks specifically, we also exam-
ined the creation of juxtaposed views. Of all 1,430 unique
clique patterns, more than half (n=747) contained a spatial
arrangement of two or more � charts ; we list the five most
frequently occurring clique patterns in Figure 6B. The most
dominant patterns are cliques containing only � chart block
types, varying in size from 2 to 4. When two � chart blocks
occur with other blocks, it was more common for those other
blocks to be a text or é multimedia block.

The clique analysis shows that like is often juxtaposed
with like in dashboards: common dashboard elements are
visually grouped together. As with the aforementioned block
composition analysis, the results emphasize simpler dashboard
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Fig. 5. Summary statistics for (A) distribution of block types across dashboards and (B) distribution of interactive connection types across dashboards.

Most frequently occurring clique patterns overallA

Most frequently occurring clique patterns with two or more chart blocksB

Fig. 6. Frequently occurring clique patterns from the adjacency graph
analysis. Nodes map to different block types including � chart , text ,

X filter , f legend , and é multimedia .

designs but reiterate that authors do experiment with more
complex designs that mix block types within close spatial
proximity, such as having text or é multimedia blocks
that are connected to multiple � charts .

B. Interactivity in Dashboards

Complementing our analysis of the visual components of
dashboards, we also analyzed the connections between blocks
to understand what types of interactions dashboards commonly
support (RQ3). Note that we refer to a dashboard as interactive
if clicking on one block updates another block (e.g., by
filtering, highlighting, or changing visualized data fields), as
opposed to other forms of interactivity that only involve
individual blocks (e.g., hovering over a point in a single chart
to generate a tooltip).

1) Is interactivity common in dashboards?: We found that
19,304 of the 25,620 dashboards in our corpus (75%) were
interactive and that their design patterns varied considerably.
In particular, the number of interaction connections between
blocks ranged from 1 (e.g., a filter acting as a control for a sin-
gle chart) to 992 (median: 6, mode: 2) interaction connections
in a dashboard. Recall that a single block can be the source
or target of multiple interactions. The maximum possible
interaction connections in a Tableau dashboard are bound by
( � charts − 1 + f legend + X filters ) ∗ � charts . On

average, 58% of the possible interactions between blocks were
applied (median: 50%, mode: 100%), suggesting that when
authors add interactions, they tend to make a considerable
portion of the dashboard interactive.

2) How does interaction commonly manifest?: Of the
three Tableau blocks that support interaction connections
( � chart , X filter , and f legend ), X filter 99K � chart
was most common with 13,228 out of the 19,304 interac-
tive dashboards (69%) supporting this style of interaction,
followed by � chart→� chart (46% of dashboards) and
f legend 99K � chart (43% of dashboards). These results
are summarized in Figure 5B and suggest that there are
multiple strategies for interaction design or entry points for
users of an interactive dashboard.

Collecting both spatial adjacency and interactivity in graph
structures sharing common nodes allows us to assess the
relationship between these two factors. While one might
assume that the blocks that control a particular portion of the
dashboard would be spatially next to each other, we found that
this was not always the case. In fact, out of a total of 343,929
interactions, only 105,317 (30%) were in cases where blocks
were adjacent. Out of these 105,317 adjacent + interactive con-
nections, 58275 (55%) were � chart→� chart interactions,
37186 (35%) were X filter 99K � chart , and the remaining
9856 (10%) were f legend 99K � chart interactions. This
distribution suggests two broad genres or patterns of inter-
action design: one was cliques or tightly connected subgroups
of � charts mutually interact and another “light switch” style
where a control panel with X filters and f legends interacts
with many if not all charts on a dashboard.

C. Characterizing Clusters of Dashboard Design Patterns

Finally, to explore the design patterns across our corpus
we conduct a clustering analysis (see Section IV-D2 for
methodological details and parameter sensitivity analysis). We
analyzed the features and topological relationships from the
adjacency and interaction graphs and applied HDBSCAN to
derive clusters. As a reminder, unlike k-means (a commonly
used clustering method), HDBSCAN does not force each
dashboard into a cluster, which can mean that the resulting
cluster has more consistent design patterns; unclustered items
may be outliers, have too few examples, or might exist
resemble two clusters. Our analysis identified 16 clusters
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Fig. 7. Dendrogram generated by the HDBSCAN algorithm summarizing
cluster hierarchies. Cluster IDs are colored to match the design patterns they
were mapped to. The distinct split between clusters 0-4 on the right and
clusters 5-15 on the left illustrates that the algorithm picked up on the presence
(or absence) of interactions as a salient feature for clustering.

covering 15,013 out of 25,620 (59%) dashboards, while the
remainder was flagged as noise. In Figure 8A, we summarize
the characteristics of each cluster according to their total
number of blocks, the prevalence of non-visualization blocks,
and their connection types. As a reminder, our inclusion
criteria requires that dashboards contain at least two or more
� chart blocks. To convey the cohesiveness of each cluster,

we compute the silhouette score. A score of one indicates that
dashboards all have exactly the same design (which would be
a concerning finding). The scores in Figure 8, however, show
that, while sharing common elements, there is diversity within
each cluster, but this is less than the diversity between clusters.

1) Delineating Dashboard Design Patterns: Similar to
Bach et. al. [8] and Sarikaya et. al. [7] we used the com-
position of the dashboards, via automated clusters and then
qualitative coding, to identify design patterns (genres) of
dashboards. In Figure 7 we show the results of the clustering
analysis and in Figure 8 we provide an overview of their
characteristics according to our census dimensions. The first
major distinction between patterns is static (18% of dashboards
in our corpus) and interactive (82%); these numbers have a
similar distribution to those reported by [8]. We then examine
clusters and based on the summary statistics of each (Figure 8)
we attempted to apply the classifications from either Bach et.
al. [8] and Sarikaya et. al. [7]. In general, we found that
without additional user interviews, it was too difficult to
ascribe a specific intent of the dashboard (e.g., dashboards
for motivation and learning, dashboards for decision making)
that were described by Sarikaya et. al. [7]; this could be a
fruitful avenue for future work. Our findings aligned more
composition and layout patterns described by Bach et. al. [8],
specifically, Analytic, Magazine, and Infographic styles. There
was not a precise linear relationship between the definitions
described by Bach et al. [8] and our clusters. For example,
we use multimedia blocks to align with the pictograms and

gauges that characterize the infographic style in [8].
Magazine dashboards (n=1,913; 7.4%) predominately static

and typically include multiple text blocks that comple-
ment the � charts and provide additional commentary about
the data and key takeaways. While, infographic dashboards
(n=1,125;4.4%) generally include a richer mix of block types,
including at least one é multimedia and text block
in addition to � charts . One important difference between
our characterization of infographic and multimedia is the
prevalence of text , which is not discussed in either [8]
or [7]. Analytic dashboards (n=22,582; 88%) were much
more interactive but did not use é multimedia elements as
regularly (except cluster 6) and had text elements that
were less verbose compared to the magazine and infographic
patterns. Analytic dashboards exhibited more cross-filtering
between charts (see Connection types in Figure 8), conforming
to the definitions of this genre from [8]. One exception is
cluster 2, which contains only visualizations and has no inter-
actions, but still constitutes approximately 6% of dashboards in
our corpus; these may be proto-analytic dashboards, reflecting
either initial design explorations or be indicators of difficulties
adding other elements or interactions.

2) Content prevalence and design patterns: Our cluster
analysis shows that we can use our graph schema to apply
genres and patterns from prior research via automated meth-
ods. Our analysis can also go further and reveal variations
within the broader genres, represented as subclusters in Fig-
ure 8, which adds context to the prevalence of elements in
dashboards – something that prior work does not do at scale.
This is an example of how a design census adds perspective
to qualitative surveys of dashboard “zoos”. One way that
we interpret our results is they suggest that, in practice,
dashboard designs are simpler than some of the examples
covered in prior work [8], [7]. We arrive at this conclusion
by considering the prevalence of content elements across
dashboards (Sections V-A1 and V-B1 and their composition
into higher-level patterns, which suggest that many dashboards
are quite simple because they contain limited interactions and
have relatively few dashboard elements including visualiza-
tions. While neither Bach et al. [8] nor Sarikaya et al. [7]
make explicit claims about the variability or complexity of
dashboards within each genre, the absence of such information
and the use of more “charismatic” examples, could produce
a false impression of what users actually do. While Tableau
does impose a learning curve and constraints on the authoring
experience, it may be that simplicity is desired. Alternatively,
users do not know how to compose more complex dashboards
that could eventually meet their needs, and our census captures
this issue. While there exist power users that can create rich
and complex dashboards—the kinds likely to be studied in
prior research—our findings suggest users are the exception
and not the norm. Authoring experiences catering to these
power users neglect the majority of the population.

VI. APPLICATIONS FOR A DASHBOARD CENSUS

We return to the original premise we articulated in Sec-
tion IV-A that a census of dashboard design patterns helps
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Fig. 8. A) Characteristics of Analytic, Magazine, and Infographic design patterns distributed amongst sub-clusters. N is the total number of dashboards in
the cluster, % values refer to the percentage of dashboards containing an element (e.g., in cluster 6, 100% means all dashboards contain have text ) B)
Examples and summary characteristics of each design pattern with our graph schema representation.

visualization researchers understand user practices and support
gaps via further investigation. To lay the groundwork and help
foster ideas for future research and development, we describe
some exemplary use cases and applications of the blocks and
connections graph schema in addition to the dataset.

A. Application of a Census Dataset and Findings

The census dataset itself and its results can be used for
different downstream research objectives. Our primary interest
is in the use of this dataset to inform the development of
dashboard authoring tools. However, our findings can be used
to highlight gaps in need of further investigation, such as user
onboarding and authoring support, in addition to providing
more insight into existing practices, like intent inference,
recommendation, and guidance. While the utility of this data
ultimately depends on richness and appropriateness for the task
at hand, having a census remains an important precursor for
making such a determination.

Developing Better Onboarding Techniques to Support
Interaction. Our census shows that 75% of the dashboards
in our corpus were interactive and supported using at least
one block to visually update one or more other blocks. We
also found that interactions are configured between different
pairs of blocks ( X filter 99K � chart , � chart→� chart ,
f legend 99K � chart ) and are not always consistently used
in a dashboard (e.g., X filters may only update a subset of
� charts ). While this nuanced configuration of interactions
suggests that current tools provide a rich set of features to
author interactivity, it raises questions about the discoverability
and usability of such dashboards from a viewer standpoint.
One important direction for future systems is to incorporate
built-in strategies to improve the dashboard onboarding pro-
cess [54] and orient viewers to a dashboard and its use (e.g.,
through overlaid walkthroughs or using assistive tooltips and
guiding text). Notably, the graph schema can also be valuable
for designing features such as the underlying links that can be
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used to identify the flow of actions between blocks.

Prioritizing support for customization of simple charts
over authoring bespoke charts. As stated in Section V-A1,
our analysis showed that basic visualizations, including bar
charts, maps, line charts, tables, pie charts, etc., are more
prevalent in dashboards with only a minor subset of dash-
boards containing bespoke charts. However, while inspecting
examples during the cluster analysis, we observed that the
absence of bespoke charts did not dampen the “richness” of
dashboard designs and that authors either heavily formatted
basic charts or combined basic charts such as maps and
pie charts in innovative ways to create visually compelling
designs. Unfortunately, creating such highly stylized and cus-
tom designs with tools like Tableau can require substantial
expertise, forcing new or novice authors, in particular, to
resort to default visuals or integrate artifacts across design and
visualization tools. As the user base for dashboard design tools
broadens, it is more important to provide more expressive and
flexible authoring interfaces for formatting (including using
images and icons as marks [55]) and integrating basic charts
than to focus on allowing dashboard authors to create and
incorporate more bespoke visualizations.

Enhancing dashboard authoring through AI/ML sup-
ported intent inference, recommendations, and guidance.
A large corpus of dashboards is a useful dataset for training or
fine-tuning AI/ML models. We examine several useful appli-
cations based on the content of our corpora. Prior work has
shown that dashboards are generated for a variety of purposes
and that intents play an integral role in dashboard design [7],
[56]. However, the process of inferring dashboard intent in
their work has been largely qualitative and performed at a
small scale. For instance, Pandey et al. [56] derive dashboard
intents such as “change analysis” and “category analysis” by
manually inspecting the views, filtering widgets, and textual
content of 200 dashboards. Our schematic representation and
dataset present an opportunity to investigate this idea at scale
and explore how a combination of information from blocks
( � charts , text , and X filters ) and their connections can
be used to programmatically infer dashboard intent. Intent is
also to guide recommendations and guidance that is tailored
to the user needs at the present moment of their analysis [57].

However, our census points to both optimism and caution
when using large dashboard corpora, ours, or others that may
emerge in the future. Given that the distribution of dashboard
designs skews toward simplicity, the signals for user intent can
be washed out. Instead, it may be more appropriate to use a
census to guide a principled selection of dashboards to form
a training or fine-tuning dataset. Further, the left-out, simpler
dashboards still serve a critical purpose: they become useful
boundary markers delineating the minimum viable content and
composition necessary to derive useful recommendations.

B. Application of Blocks and Connections Graph Schema

The blocks and connections graph schema is simple and
extensible and can easily incorporate features from prior work,
such as by making their properties of blocks or new features

that others wish to study, or that emerge as dashboard au-
thoring practices change. Graphs, more generally, are flexible
data structures that have an attendant analytic toolbox that can
enable practical and informative assessments of user practices.

Improving Support for Non-Chart Blocks. Dashboards have
conventionally been considered as visual analytic artifacts
composed predominantly of multiple coordinated views [6].
However, our analysis shows that, in practice, non- � chart
blocks such as text and é multimedia (e.g., images) play
an integral role in dashboard design. An important considera-
tion for future dashboard tools is to provide ample support for
authoring and incorporating such content in flexible ways. The
prevalence of text , in particular (Figure 5A), also hints
at potential synergies with recent research on interactively
linking text and charts [58], [50], [59], and presents an
opportunity to further explore this relationship.

Having better support for non-visualization blocks can also
enable a richer analysis of dashboard content. One reason we
examine a limited set of features is that visualization blocks
tend to have more and richer features than, for example, text
or images. The visualization blocks would have dominated the
analysis. Knowing that users create other types of blocks can
prime future dashboard authoring tools to prompt the user for
richer, non-visualization data or to suggest options to users.
Our census suggests that, at present, only power users are
likely to make full use of these features.

Developing Dashboard Linters for Layout and Interaction
designs. Poor choices in dashboard design or layout can
produce designs that are confusing or even misleading. In
particular, Qu & Hullman [20] suggest that keeping multiple
views “consistent” is important for the legibility of dashboards.
In our corpus, we observed occasional mistakes or violations
in dashboard design that were visible through inspection of the
graph structure alone. For instance, interactive X filters that
were centrally placed and only applied to some (but not all) of
the � charts in a dashboard, a commonly placed f legend
although two charts used a different color mapping, etc. This
suggests the ability for our graph schemas to be used to
automatically “lint” or otherwise “audit” [60], [61] dashboards
and surface potential issues during dashboard authoring.

Designing accessible dashboards. Recent research has high-
lighted the importance of making dashboards accessible to
people with disabilities [62], [63], [64]. To this end, effectively
understanding a dashboard’s composition and design can help
both assess and improve its accessibility. For instance, in a
recent co-design study with screen reader users, Srinivasan
et al. [64] suggested that dashboards are more accessible via
screen readers if they provide explicit filtering widgets that
users can easily navigate to and adjust. The authors used our
proposed graph-based schema to model the layout and inter-
action design of dashboards and subsequently redesign them
to be more accessible. This application exemplifies how the
proposed graph schema can be used to validate if dashboards
meet different accessibility criteria. Furthermore, modeling
accessible dashboard design practices as graph heuristics can
also help automatically update dashboard designs and make
them more accessible at scale (e.g., interaction graphs should
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be updated such that any � chart→� chart connections
should have an equivalent X filter 99K � chart connection).
Enhancing dashboard search. Dashboards are challenging
artifacts to search over because both their content and compo-
sition can be relevant to end-users. However, dashboard search
currently prioritizes content elements, and more specifically,
dashboard metadata or, when present, text that is encapsulated
in the dashboard. When metadata or text content is poor, the
opportunity to search over dashboards can be limited. Using a
graph schema creates richer search opportunities. For example,
comparing a given dashboard’s graph schema to a repository of
dashboard graphs can enable searching for dashboards that ex-
hibit a similar visual layout and/or interactivity. Alternatively,
it is also possible to create an embedding representation from
the dashboard graphs and then perform a search over these
embeddings [65]. This approach is explored with knowledge
graphs of single visualizations in KG4VIS [13], but can
be extended to more general graphs that capture additional
aspects of dashboard content and composition.

VII. DISCUSSION AND CONCLUSION

Collections of user-created artifacts are an important re-
source for understanding existing user practices and motivating
research agendas and trajectories. Here, we consider a corpus
of dashboards, a complex artifact that ties together differ-
ent content elements, including inter-mixing visualizations
with other media, composed in both interactive and static
configurations. Aspects of dashboards have been examined
individually, most notably the visualization elements [9], [13],
and together to reveal composition patterns [8], [7], [10].
Although these attempts use a variety of approaches to capture
different aspects of dashboard content and composition, no one
approach fully covers the others, and none have been tested
on a large corpus of dashboards.

Our research advances prior work by proposing a block
and connections representation of dashboards. Our approach
brings together and extends prior research through a simple
graph schema. Blocks define content, while connections define
their relationships. We show that this approach can be used to
capture and examine dashboard design patterns en masse to
derive a census of these user artifacts.

A. From a “Zoo” to a “Census” of Dashboards
Prior research that closely examines dashboards primarily

uses ‘close reading’ approaches to annotate dashboard features
and derive design patterns. However, this approach can only
reasonably analyze a limited number of dashboards due to their
intensive manual labor demands. As with Heer et al.’s [11] “vi-
sualization zoo”, these hand-picked and hand-analyzed corpora
may not reflect common practice or dashboards of everyday
use: “After all, you don’t go to the zoo to see chihuahuas
and raccoons; you go to admire the majestic polar bear, the
graceful zebra, and the terrifying Sumatran tiger.” A research
agenda emphasizing charismatic fauna while overlooking the
more prevalent raccoon has limitations.

In our census, we show that dashboard quality varies con-
siderably, with many being far simpler than prior research
accounts for. While we cannot identify a singular mechanism

behind this variability or this bias toward simplicity, potential
rationales suggest missing areas in our current thinking and
understanding of dashboard design and use. For instance,
existing authoring tools may not offer sufficient support for
the majority of dashboard authors to create richer dashboards.
New authoring paradigms or tools could address this mis-
match. Or alternatively, the analytical needs and data literacy
of dashboard audiences may be fully met by simple and static
collections of one or two simple charts; if so, then research
that focuses on more “exotic” forms of visual presentation and
interactivity may fail to meet users where they are and assist
them with their everyday analytical goals [66].

With the growth of data-intensive AI/ML applications,
our census also offers an opportunity for reflection. Prior
uses of visualization and dashboard corpora do not comment
on what the corpora contain or how it could impact the
recommendations or guidance of AI/ML models. While at
face value, large corpora may invite complex analyses, the
distribution of patterns surfaced by a census can inform if the
analyses are feasible and appropriate. The necessary data may
not exist, or, for example, if analyzing text content, it may
be too sparse and simple to be usable. Developing a “zoo”
of exotic examples again risks misalignment with user needs.
We present initial evidence for how a census could clarify
appropriate AI/ML usage of dashboard corpora. Further, our
graph schema could be used to generate data cards to inform
how these corpora should be used by downstream models.

B. Limitations
The primary limitation of our research is that we only

use the Tableau Public corpus. However, prior research has
also made use of corpora obtained from a single source
and defined using a common specification to simply their
analytic workloads without loss of generality. For example,
VizML [9] uses Plotly charts without consideration of visu-
alizations made with other libraries. DMiner [10] considers
a set of approximately 850 Tableau dashboards mined from
Github. The majority of the corpus analyzed by Bach et. al. [8]
is also reported on in Sarikaya et. al. [7]. While corpora
are generated and defined differently, and so may highlight
different aspects of dashboard design, we hypothesize that
our finding of dashboard design patterns skewing toward
simplicity will likely hold. A final limitation is that we analyze
relationships between dashboard elements via their interactive
relationships and positional placements. There are potentially
other ways of defining relationships between these elements,
such as shared data or semantic information that we do
not explore. What we analyze here is the minimum when
considering multiple elements. For example, a representative
text image may not share data with a visual encoding (see
Figure 1 for an example), but we are able to model their
adjacency or overlaps. Future work may seek to go further
and explore other edge types. We make our corpora publicly
available so that others can build on our findings or compare
them to prior research in ways we do not cover or anticipate.
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