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Abstract—Understanding and accounting for uncertainty is critical to effectively reasoning about visualized data. However, evalu-
ating the impact of an uncertainty visualization is complex due to the difficulties that people have interpreting uncertainty and the
challenge of defining correct behavior with uncertainty information. Currently, evaluators of uncertainty visualization must rely on
general purpose visualization evaluation frameworks which can be ill-equipped to provide guidance with the unique difficulties of
assessing judgments under uncertainty. To help evaluators navigate these complexities, we present a taxonomy for characterizing
decisions made in designing an evaluation of an uncertainty visualization. Our taxonomy differentiates six levels of decisions that
comprise an uncertainty visualization evaluation: the behavioral targets of the study, expected effects from an uncertainty visual-
ization, evaluation goals, measures, elicitation techniques, and analysis approaches. Applying our taxonomy to 86 user studies of
uncertainty visualizations, we find that existing evaluation practice, particularly in visualization research, focuses on Performance and
Satisfaction-based measures that assume more predictable and statistically-driven judgment behavior than is suggested by research
on human judgment and decision making. We reflect on common themes in evaluation practice concerning the interpretation and
semantics of uncertainty, the use of confidence reporting, and a bias toward evaluating performance as accuracy rather than de-
cision quality. We conclude with a concrete set of recommendations for evaluators designed to reduce the mismatch between the
conceptualization of uncertainty in visualization versus other fields.

Index Terms—Uncertainty visualization, user study, subjective confidence, probability distribution.

1 INTRODUCTION

Data-driven presentations have become commonplace in public-facing
domains like the news as well as in the scientific literature. A news-
paper article might depict differences in the probabilities of a set of
political candidates winning an election. A government agency might
present future temperature predictions of a model analyzing climate
change trends. By conveying the possibility that a point estimate may
vary, uncertainty visualizations enable people to make more informed
decisions. As public trust in science declines [19] and overconfi-
dence in noisy effects reportedly affects a number of empirical dis-
ciplines [42], uncertainty visualizations are more important than ever.

It is the task of research in uncertainty visualization to provide evi-
dence of the impacts of proposed uncertainty visualization techniques,
so as to inform practice. However, how to design an effective eval-
uation of an uncertainty visualization is rarely addressed in research
focused on creating uncertainty representations. A researcher or prac-
titioner seeking to evaluate a visualization with users must instead rely
on general purpose frameworks designed to ensure that evaluation de-
signs are appropriate given the nature of the visualization contribution
(algorithmic, interaction technique, encoding, etc.) [57, 67].

Recently, scholars have pointed to the challenges evaluating uncer-
tainty visualizations compared to evaluating other visualizations [38,
55, 79]. For example, researchers in judgment and decision mak-
ing describe eliciting and analyzing subjective accounts of uncertainty
as a process fraught with its own uncertainty [72], though the diffi-
culty of uncertainty elicitation is seldom considered in studies of un-
certainty visualization. Statisticians and other scholars have long de-
bated how to define normative accounts of uncertainty [2, 21, 27, 83];
without clear agreement on what uncertainty is, it is difficult to imag-
ine an agreed upon approach to evaluating uncertainty comprehen-
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sion. Canonical work on judgment under uncertainty argues that peo-
ple display cognitive biases when making decisions involving uncer-
tainty [51, 50]. Historically, such biases have been attributed to heuris-
tics, the use of simple judgments as a proxy for difficult judgments
[49, 90, 91, 92]. A common misconception is that reliance on heuris-
tics is bound to cause biased judgments. On the contrary, heuristics
are adaptive and often lead to accurate judgments. In the context
of evaluating uncertainty visualizations, this means that even when
uncertainty is presented in a non-optimal format–such as error bars,
which lead to perceptual bias [69, 11] and underweighting of uncer-
tainty [40]–responses based on heuristics will sometimes be correct.
Consequently, it can be difficult to create the conditions in which
heuristics are flawed and cognitive biases occur. In the face of these
and other unique evaluation challenges, the integrity of our knowledge
on how to best visualize uncertainty is at stake.

We take a closer look at the evaluation of uncertainty visualizations
through the largest to date systematic review of existing uncertainty
visualization practice. We survey the techniques used in 86 uncer-
tainty visualization evaluations published between 1987 to 2018 in a
variety of disciplines. Our first contribution is a taxonomy for dis-
tinguishing between uncertainty visualization evaluation approaches
(Fig. 2). Our taxonomy distinguishes key considerations at six levels
of decisions comprising an uncertainty evaluation approach. Behav-
ioral Targets describe what aspects of the impact of uncertainty visu-
alization(s) on user behavior are examined, such as its impact on Per-
formance or the Quality of User Experience. Expected Effects describe
how a study defines when an uncertainty visualization is successful or
not. Evaluation Goals pertain to the study design: was the goal to
Compare multiple visualizations, Determine the impact of presenting
uncertainty versus not, or another goal? Measures include directly
elicited measures such as satisfaction ratings, probability estimates,
subjective confidence, etc. as well as derived measures representing
transformations such as error, or the extent to which a decision max-
imizes utility. Elicitation describes ways that users’ responses can be
gathered, from use of a physical apparatus to common HTML inputs.
Analysis describes how an evaluator uses responses to determine if
Expected Effects were achieved, such as Frequentist Null Hypothesis
Significance Testing (NHST) or Bayesian Estimation, for example.

Our second contribution is an analysis of evaluation paths, where
we compare the co-occurance of codes for 86 evaluation studies across
the different levels of our taxonomy. For example a common eval-
uation path describes a Behavioral Target (L1) of Performance with
an Expected Effect (L2) of Increasing Accuracy, conducted by (L3)
Comparing the Impacts of Multiple Visualizations through a Measure



(L4) of participant’s Probability estimates from which Error is de-
rived, which are Elicited (L5) via a Slider and Analyzed (L6) using a
Frequentist NHST approach (Fig. 1). We find that existing evaluation
practice, particularly in Visualization research, focuses on comparing
multiple uncertainty visualizations to one another using a small num-
ber of Performance and Satisfaction-based measures elicited using
constrained inputs such as multiple choice or Likert-style responses.
These studies implicitly assume that correct responses are arrived at
using procedures that resemble statistical decision making, that peo-
ple’s meta-cognitive assessments of how effective an uncertainty vi-
sualization is are reliable, and that elicitation techniques are mostly
interchangable without affecting responses.

Our final contribution is a set of recommendations designed to en-
courage more transparent evaluations aligned with the state of the art
in knowledge on uncertainty comprehension. Our results confirm and
extend recent recommendations made by others [38, 55, 54]. We de-
scribe how evaluators tend to interpret subjective uncertainty in several
incompatible ways, as either directly comparable to statistical uncer-
tainty or as an inherently subjective meta-cognitive assessment of con-
fidence. We describe what lessons can be learned from formal analyses
of decision making and subjective uncertainty using techniques from
experimental economics, psychophysics, and judgment and decision
making. We highlight the potential for decision-based approaches to
enable more realistic evaluations relative to accuracy or efficiency, the
value of evaluations that aim to understand why visualizations produce
different behavior, and the value of including no uncertainty and tex-
tual controls as a means of developing a deeper base of knowledge
around the impacts of uncertainty visualization, among others.

2 RELATED WORK

2.1 Improving Visualization Evaluation

Our work extends a larger body of work aimed at improving evalua-
tion methods in visualization. Researchers have contributed overviews
of qualitative and quantitative approaches [57, 94] and models for en-
suring that one selects an evaluation that is appropriate for a given
task, context, or contribution type [43, 67, 84]. For example, Mun-
zner’s well known Nested Model [67] stresses the dependencies be-
tween stages of the design process (e.g., characterizing the task and
data, designing visual encodings), where an error at one stage can af-
fect subsequent stages. Our taxonomy similarly distinguishes between
different “stages” of decisions in the design of evaluations for uncer-
tainty visualizations.

Several prior works describe trends in evaluation in the visualiza-
tion community through systematic review of studies (e.g., [44, 57]).
Lam et al. use a review of 361 visualization papers to contribute a set
of scenarios describing the most common goals and outputs of differ-
ent forms of evaluation. Their work takes a broad view that evaluation
can occur at any stage in a design process. Isenberg et al. [44] borrow
from Lam et al.’s [57] codes in a review of 581 papers that evaluate the
impacts of visualizations on users.

We restrict our review to studies that correspond to Lam et al.’s
scenarios for understanding visualization: formal studies conducted to
determine a visualization’s effects. Similar to both prior works, we
include a distinction between evaluations that target Performance ver-
sus User Experience. Additionally, in our taxonomy we include a third
type of behavioral target of Semantics and Interpretation of uncertainty
depictions which we observed in multiple studies. Because the goal of
our taxonomy is to surface intended goals and evaluation designs for
uncertainty information, we employ a more detailed coding scheme
than these prior surveys. For example, in contrast to the reviews of
Lam et al. and Isenberg et al., which used a total of 17 and 8 codes
respectively, we employ a coding scheme comprised of 72 total codes
distributed across six different levels of evaluation design decisions (3
to 18 codes per level).

2.2 Evaluating Uncertainty Visualization

Various standards boards and public-facing organizations have de-
scribed the importance of conveying uncertainty as a component of

scientific data [24, 71, 88]. Visualization researchers and cartogra-
phers have proposed a large number of techniques for visualizing un-
certainty, which can be classified using various taxonomies [30, 45, 62,
76, 78, 86, 89]. We have observed that few studies used to validate new
techniques motivate the evaluation design against alternatives, in addi-
tion to providing sufficient information for understanding a presented
study (i.e., detailing the questions posed to participants, the partici-
pant sample, and how the measures were calculated). This aligns with
Kinkeldey et al.’s [55] observation that few of 44 cartographic uncer-
tainty visualization evaluations justified their tasks.

Some researchers have commented on the unique aspects of eval-
uation of uncertainty visualization. Harrower [33] argues that evalu-
ators should be more concerned with “does it help” and less focused
on “which vis is better,” given the inherent complexity of uncertainty
information. Boukhelifa and Duke [8] mention assessing how uncer-
tainty information is used as one challenge in visualizing uncertainty,
while Bonneau et al. [6] distinguish three types of evaluations: theo-
retical evaluation using design principles (e.g., [94]), low-level visual
evaluation (e.g., [52]), and task oriented user study (e.g., [82]).

Several recent papers comment on the challenges of designing a
realistic uncertainty visualization evaluation while maintaining suffi-
cient experimental control to test predictions [55, 79]. Kinkeldey et al.
summarize studies reported in 34 publications that describe an evalu-
ation of how geospatial uncertainty visualizations communicate [55].
In a follow up review on an overlapping set of 43 studies, the authors
focus instead on assessing the impact of uncertainty visualization on
decision-making and risk assessment [54]. These works characterize
types of studies (e.g., laboratory, etc.), types of assessment (objec-
tive, involving correct answers, versus subjective, exploring user intu-
itions), types of uncertainty, visualization techniques examined, appli-
cation domains, and participant and task characteristics. They note that
in many cases evaluations focus on simplified, low-level visual judg-
ment tasks, and appear to be designed in an ad hoc manner. They also
find a tendency to measure decision-making rather than perceptions of
risk, which we also observe in our larger sample. They recommend
greater systematicity and focus on realistic user tasks.

Focusing on evaluation across visualization subfields, Hullman [38]
summarizes patterns in a convenience sample of uncertainty visualiza-
tion studies, characterizing study goals and types of measures. They
review challenges to the epistemological nature of uncertainty, and
provide specific suggestions related to eliciting subjective probabil-
ity such as using frequency framings, familiar probability “anchors”
(e.g., coin flips), and comparing multiple forms of elicitation.

Our taxonomy extends these prior classifications with a more com-
prehensive set of distinctions about decisions at each stage of visual-
ization evaluation, informed by categories that emerged in our analysis
as well as the state-of-the-art in judgment and decision making.

3 METHODS: CREATING THE TAXONOMY

3.1 Scope: Evaluative User Studies
To be included in our sample, we required that a study included at
least one visual representation of uncertainty, and at least one research
question concerning the impact of an uncertainty visualization on a
user’s performance, impressions, or behavior. The goal of these crite-
ria was to eliminate, for example, studies focused on different forms
of textual representations of uncertainty or different framings of un-
certainty (e.g., frequency) that did not involve visualizations per se.
Also eliminated were studies that presented uncertainty to viewers but
without posing any research questions concerned with how visual rep-
resentation of uncertainty impacted behavior or responses.

As user studies, each study necessarily included at least one means
of eliciting responses or actions from users of a visualization. Our fi-
nal criterion for inclusion was that each study included a quantitative
analysis of users’ responses or behaviors as impacted by a visualiza-
tion. This criterion is meant to exclude studies that did not judge how
prevalent or important different results are (i.e., studies that refrain
completely from reporting on the frequency of different results, even
textually through terms such as “most users”). Because we are in-
terested in gaining a comprehensive view of available techniques for



Table 1. Categories of publication venues and application domains in
our sample of 86 uncertainty visualization evaluations.

Publication Venue # Application Domain #
Automotive Ergonomics 2 Aviation/Defense 1
Cartography/GIS 19 Astrophysics 1
Cognitive Psychology 10 Cartography/GIS 14
Computer-Aided Medicine 2 Domain-general 20
Health informatics 4 Graphs/Trees 2
Human Factors 6 Health/Medicine 14
Judgment & Decision-Making 5 Management 1
Information Visualization 24 Meteorology 14
Meteorology 1 Manufacturing 2
Scientific Visualization 9 Transit 6
Security 1 Volumetric Data 10
Ubicomp 3

uncertainty visualization evaluation, we put no restrictions on the dis-
ciplinary venue where a study was published.

3.2 Sample
We seeded our list of publications containing evaluation studies with
Potter’s online library of uncertainty visualization studies [77]. This
resource contains 241 publications presenting uncertainty visualiza-
tion techniques or studies published between 1990 and 2013 in core
venues associated with the research fields of InfoVis, SciVis, Cartogra-
phy, Medicine, and Psychology, among others. The first author exam-
ined each of the 241 papers to remove those that did not contain eval-
uative user studies as defined above (leaving 48 studies). To identify
studies from 2013 to the present, we used a set of queries containing
methodological terms like ”user study” or ”controlled experiment” as
well as indicators of uncertainty visualization like ”uncertainty visual-
ization”, ”uncertainty representation”, ”risk visualization”, ”graphical
representation of risk”, and ”risk representation”. We queried Google
Scholar for each combination of method term and uncertainty visual-
ization term. We manually went through each list of results, stopping
when we reached an entire page (10 papers per page) of papers that
were no longer relevant to uncertainty visualization. This resulted in
an additional 52 studies (100 total). During the coding process, we
eliminated 14 of these 100 studies as a result of not being able to ob-
tain the paper or noticing a priori that a study did not fulfill one of
our inclusion criteria (e.g., we removed an fMRI study where uncer-
tainty visualizations were shown only to gauge how the brain reacts to
uncertainty).

Table 1 summarizes the number of studies by publication discipline
and application domain.

3.2.1 Coding Procedure

Fig. 1. A depiction of our evaluation taxonomy (top), which distinguishes
evaluation decisions made at six different levels; and an example eval-
uation path (bottom) from the set of 372 paths that we coded across a
sample of 86 publications.

We created an initial “top-down” set of distinctions based on our
own knowledge of procedures in visualization and related fields such
as cognitive psychology. This basic taxonomy differentiated high-
level goals (e.g., “improving decision making”), intermediate goals

(e.g., “improving accuracy in data extraction”), and evaluation designs
(e.g., “comparing multiple uncertainty visualization treatments“). Im-
plementation decisions were considered separately and were catego-
rized based on what measure was elicited (e.g., a probability esti-
mate), how it was elicited (e.g., a slider), and analyses approaches
(e.g., Frequentist NHST). The taxonomy was prescriptive in that we
included nodes for techniques that are recommended in literature on
expert probability elicitation [72], such as graphical elicitation [28]
and formal analyses of decision making [14].

We next iteratively applied a “bottom-up” approach in which we
assessed the approaches used in our sample. We isolated each measure
in a study, tracing each distinct analytical comparison that was applied
to this measure. We labeled the research question, expected effect,
evaluation design, elicitation method, and analysis approach for each
comparison (creating an “evaluation path”; e.g., Figure 1).

As we analyzed more studies, we periodically added new codes to
our taxonomy and refined the distinctions between levels of the taxon-
omy. For example, we opted to reframe high-level study goals more
specifically as Behavioral Targets, and intermediate goals as Expected
Effects describing the direction of a hypothesized effect in order to
more cleanly distinguish these two levels. We also added sub-levels to
differentiate elicited measures (e.g., subjective confidence, probability,
etc.) from derived measures (e.g., alignment between confidence and
accuracy, error, etc.) After all substantive changes, we recoded any
affected paths. Our taxonomy includes 76 total codes, with an average
of 12.7 codes per each of the six levels.

The first and second author evaluated all studies, resolving inconsis-
tencies between their codes and discuss ambiguities. Our final coded
sample includes 372 paths (mean per publication: 4.3 paths).

4 UNCERTAINTY VISUALIZATION EVALUATION TAXONOMY

4.1 Overview

Our taxonomy proposes six levels of decisions that characterize an
uncertainty visualization evaluation. We distinguish between aspects
of an evaluation that describe its Research Values and Aims (L1, L2),
and those that describe its Research Design (L3 - L6).

Applying our taxonomy to the 86 studies in our sample produced
372 instances of evaluation paths. We present each code, along with its
definition, frequency, and examples below, and depict all coded paths
in Figure 2. Our supplement, available at https://github.com/
jhullman/uncertaintyVisEval (10.5281/zenodo.1324465),
provides interactive visualizations that associate paths with studies.

4.2 L1, L2: Research Values and Aims

Research values and aims are comprised of Behavioral Targets (L1)
describing the focal dimension of the uncertainty visualization(s)’ im-
pact and Expected Effects (L2) representing the directions of expected
outcomes that are framed as either more or less desirable (e.g., more
risk aversion, more confidence as ideal behavior).

4.2.1 L1: Behavioral Targets

We assigned each evaluation path one of three broad categories of vi-
sualization effects that a study can attempt to isolate:

• Performance (241; 64.8%): how effectively a user can extract
information, make inferences, or make decisions with a visual-
ization (e.g., [40, 82, 85]).

• Interpretation & Semantics (64; 17.2%): the ease with which
a user associates uncertainty with an encoding (e.g., [7, 63]).

• Quality of User Experience (67; 1.8%): the user’s valua-
tion of the visualization, such as their preference or satisfaction
(e.g., [29]).

The first two categories map closely to those applied in prior sur-
veys of visualization evaluation (i.e., Kinkledey et al’s [54] “effect”
and “communication”, which can be traced to subsets of Isenberg et
al.’s [44]’s codes for assessing visualization evaluation. We decided

https://github.com/jhullman/uncertaintyVisEval
https://github.com/jhullman/uncertaintyVisEval
https://zenodo.org/badge/latestdoi/143046936


Fig. 2. 372 evaluation paths that we observed across a sample of 86 publications with uncertainty visualization evaluations. The number of inlinks
and outlinks differ for some nodes due to the same evaluation path representing multiple codes at a single level (e.g., Analysis).

to create a separate category for “Quality of User Experience” as Ex-
pected Effects associated with these Behavioral Targets tended to dif-
fer from Expected Effects associated with Behavioral Targets of Per-
formance and Interpretation & Semantics in that the correctness and/or
format of the user’s internal representation was not of interest.

Our results make clear that most evaluation paths (241; 64.8%) in
our sample framed the Behavioral Target (L1) as an assessment of
Performance. Performance targets imply that visualizations are tools
for supporting analytical tasks.

4.2.2 L2: Expected Effects

In addition to targeting a specific dimension of behavior, evaluation
studies typically presuppose the direction of an effect of interest. We
defined Expected Effects including:

• Accuracy (134; 36%): Difference from a ground truth response
(e.g., [37, 40]).

• Confidence/Accuracy Alignment (5; 1.3%): Correlation be-
tween confidence and accuracy (e.g., [11]).

• Impact on Decision-Making (3; 0.8%): Effects on decisions
where no ground truth is implied (e.g., [15]).

• Decision Quality (14; 3.8%): Difference from a rational deci-
sion standard (e.g., [23, 68]).

• Memorability (3; 0.8%): How well a fact is remembered
(e.g., [39]).

• Risk Avoidance (23; 6.2%): The degree to which a user’s re-
sponse attempts to avoid risk (e.g., [35]).

• Intuitiveness/Reading ease (31; 8.3%): How “naturally” a vi-
sualization supports correct interpretations (e.g., [7]).

• Awareness of Judgment Process (8; 2.1%): The user’s ability
to recognize aspects of their judgment (e.g., [15]).

• Learnability (0): The user’s ability to improve their perfor-
mance over time

• Confidence (24; 6.5%): The degree of belief in the validity or
truth of a judgment, data set, visualization, etc. (e.g., [16]).

• Satisfaction (38; 10.2%): The user’s aesthetic valuation of a vi-
sualization (e.g., [22, 61]).

• Interaction (4; 1.1%): How much interaction a visualization re-
ceives in time, number of clicks, etc. (e.g., [32, 35]).

• Efficiency (37; 9.9%): How well a visualization supports quick
judgments (e.g., [59]).

We coded evaluation paths that did not imply any expected direction
for an effect on user responses as intending to:

• Understand internal model (48; 12.9%): Seeking to understand
how a judgment is made (e.g. [13, 87]).

Our goal with L2 was to capture the assumptions that drive eval-
uators toward focusing on a certain type of response as a signal of
whether an uncertainty visualization “works”. As such, decisions at
L4 Measures tend to be dependent on L2.

A total of 324 (87%) evaluation paths implied an Expected Effect
(L2), either explicitly through a hypothesis or prediction, or implicitly
in how the goal of uncertainty visualization was framed in contextu-
alizing the task. Over one third of evaluation paths described tasks
where ground truth could be used to establish what an accurate versus
inaccurate response looked like. Among the 48 (13%) paths that did
not imply an Expected Effect, those associated with Performance tar-
gets tended to represent attempts to understand users’ mental models
or strategies as a means of understanding why judgments were better
or worse. When associated with an Interpretation & Semantics target,
these paths similarly tended to represent attempts to understand mental
models or strategies, but where this understanding was framed as a pri-
mary goal, rather than being in service of supporting Performance or a
better User Experience (e.g., [11, 87]). We did not observe any cases
where a Behavioral Target of Quality of User Experience was assessed
with a subgoal of trying to understand the user’s internal model.

We coded paths that did not imply a desired direction for an effect
as aiming to “Understand the user’s internal model”.

4.3 L3 - L6: Research Design
The research design of a study is comprised of Evaluation Goals (L3)
represented by experimental design considerations, Measures (L4)
represented by elicited responses, Elicitation (L5) describing how the
measures are elicited, and Analysis Paradigms (L6) describing how
measures are modeled.

4.3.1 L3: Evaluation Goal
We observed several forms of comparisons that a study could use:

• Compare impacts of multiple uncertainty visualizations (255;
68.5%): Results of one or more tasks are used to rank two or
more uncertainty visualizations (e.g., [11, 40, 53]).



• Determine the impact of presenting uncertainty (98; 26.3%):
At least one visualization that does not contain uncertainty infor-
mation is evaluated (e.g., [68]).

• Validate effectiveness of an uncertainty vis (5; 1.3%): A user
study is designed to confirm that a visualization improves some
response(s). (e.g. [80]).

• Understand why/how a visualization works (54; 14.5%): Re-
sponses to a visualization(s) are analyzed to identify or confirm
some judgment mechanism (e.g., [87]).

• Understand interactions with user characteristics (53;
14.2%): The effect of properties of the user (expertise, location,
etc.) on responses is analyzed (e.g., [1]).

Notably, 170 (45.7%) of the 372 evaluation paths that we coded
that compared multiple visualizations did not include any other evalu-
ation goals. We are nonetheless encouraged by the fact that roughly a
quarter of paths (98) involved a comparison to a no-uncertainty base-
line condition, a technique that others have suggested should be more
common in the uncertainty visualization evaluation literature [33].

4.3.2 L4: Measures
Measures prescribe what aspects of users’ behavior or beliefs are
elicited to assess whether expected effects have been achieved.

• Decision measures (31; 8.3%)

– Decision (31; 8.3%): A hypothetical choice action (e.g.,
saying when they would leave for the bus [23]).

– Allocation (0%): An amount of currency wagered to en-
dorse a choice (e.g., [74]).

• Attribute-based measures (141; 37.9%)
– Value of [nominal | ordinal | continuous] variable (67;

18%): Specifying a value along a provided scale (e.g., ask-
ing the user to estimate the forecasted temperature from a
display [46]).

– Count (15; 4%): Specifying a count (e.g., of features of a
certain type).

– Probability (29; 7.8%): A probability specified as a
probability or frequency (e.g., [40]) or as a Likert-style
question asking for the relative probability of an event
(e.g., [1]).

– Variance (4; 1.1%): A value or set of values describing
how much an outcome can vary (i.e., a range, standard de-
viation, standard error, etc. as in [31]).

– Rank by [data attribute | uncertainty attribute] (22;
5.9%): The top k features sorted by a numerical attribute.

• Self-report measures (161; 43.3%)
– Spontaneous Impression (16; 4.3%): An unconstrained

description of one’s reaction to a visualization (e.g., [8]).
– Subjective Confidence (28; 7.5%): A valuation of one’s

confidence in information or a judgment.
– Perceived Risk/Reliability (15; 4%): How risky, or con-

versely how reliable, one believes an outcome is.
– Perceived Ability/Effort (29; 7.8%): How hard a visual-

ization is to read or use.
– Self-reported Satisfaction (41; 10.8%): An aesthetic val-

uation of a visualization.
– Self-reported Intention (10; 2.7%): A reported intention

to use or recommend information or an artifact (e.g., [17]).
– Willingness to Pay (6; 1.6%): A reported intention in-

volving allocating money to an information or artifact(s).
– Self-reported Action (17; 4.6%): Whether one used, re-

membered, etc. information or an artifact.
• Implicit measures (36; 9.7%):

– Galvanized Skin Response (GSR) (1; 0.3%): Change in
the electrical resistance of the skin.

– Interaction logs (35; 8.9%): A log of a user’s behavior as
they use a visualization.

– Eye movement (2; 0.5%): An eye tracker log of voluntary
or involuntary eye movement.

Often evaluators use directly elicited measures as input to transfor-
mations. For example, both Error and Bias are derived measures that
can be calculated for a number of lower level measures given ground
truth. We therefore distinguish between the measure that is directly
elicited (L4a, above) and Derived Measures (L4b, below) which de-
scribe the possible transformations of the lower level measures.

• Descriptive Error Measures (130; 35%):
– Error (112; 30.1%): Can be calculated as binary, continu-

ous, or using Signal Detection theory (TP, TN, FP, FN).
– Bias (18; 4.8%): Can be calculated as an ordinal(i.e., <,

=, >) or continuous value.

• Aggregate Descriptive Measures (16; 4.3%):
– Precision (2; 0.5%): How consistent a user’s responses are

across judgments.
– Variance (4; 1.1%): How consistent a set of users’ re-

sponses are across a single judgment.
– Relation of response with ground truth (5; 1.3%): How

much a subjective measure like confidence or perceived
importance of a feature aligns with ground truth.

– Change in response (5; 1.3%): How much a response like
confidence, probability estimate, belief, etc. changes af-
ter using a visualization (e.g., evaluating how much peo-
ple’s judgments about climate change realities change after
viewing a visualization [35]).

• Decision Measures (14; 3.8%):
– Utility maximization (7; 1.9%): How closely a decision

aligns with the optimal decision under utility theory.
– Compliance with optimal strategy (7; 1.9%): How

closely a user’s responses follow an optimal strategy.

• Explanatory Measures (7; 1.9%):
– Shape of response function (3; 0.8%): The shape of a

user’s inferred internal judgment function (e.g., [87]).
– Strategy (4; 1.1%): A process describing how a user made

a judgment.

• Semantic Measures (8; 2.2%):
– Risk Aversion (2; 0.5%): The degree to which a direct

measure, like Willingness to Pay, implies a desire to avoid
risk.

– Affective associations (3; 0.8%): The degree to which a
direct response (e.g., a rating on a scale comprised of two
adjectives) is associated with some affect.

– Uncertainty association (3; 0.8%): The degree to which
a direct response is associated with uncertainty.

• Implicit Measures (38; 10.2%):
– Number of Interactions (5; 1.3%): A count of how often

an action occurred (mouse click, page view, etc.)
– GSR Features (1; 0.3%): For example, number or vari-

ance in GSR signals (e.g., [93]).
– Eye fixations (2; 0.5%): Distance between sequential fix-

ations, frequency between short distances, etc. (e.g., [56]).
– Time (29; 7.8%): The duration of a task completed by the

user (a session, question response, etc.).



Our results indicate that the most common category of Measure
(L4a) in our sample was Self-Report Measures, with multiple specific
measures (Subjective Confidence, Self-reported Satisfaction, and Per-
ceived Ability/Effort each occurring in more than 5% of evaluation
paths). Attribute-based measures were also common, including Val-
ues of Nominal, Ordinal, and Continuous variables but also to some
extent Probability and Rankings of entities by uncertainty or another
quantitative variable. Decision Measures and Implicit measures were
both notably less common.

More than half of all evaluation paths included Derived Measures
(L4b). Not surprisingly, error measures were the most commonly used
at roughly 30%, with the implicit measure time as the second most
common at roughly 8%. Deriving bias (error with direction) occurred
in roughly 5% of evaluation paths.

4.3.3 L5: Elicitation
Elicitation concerns how measurements are generated. For example, a
study that compares how different uncertainty visualizations (L3 Com-
pare impacts of multiple uncertainty visualizations) impact users’ con-
fidence in their decisions (L4 Subjective confidence) could ask users to
rate their confidence on a scale from 50 (random) to 100 (certain) im-
plemented as a continuous slider with numerically labeled endpoints
(L5 Slider). Research outside of visualization suggests that measures
related to subjective uncertainty are sensitive to the elicitation pro-
cess [28, 72]. By distinguishing among formats for collecting users’
responses, our goal is to increase the level of awareness of elicitation as
a critical design choice in uncertainty visualization evaluation and vi-
sualization evaluation more broadly. We observed elicitation through:

• Physical apparatus (6; 1.6%): Interactions with physical ob-
jects (e.g., casts of the human body [85]).

• Direct selection (10; 2.7%): Input recorded through interaction
with a stimulus (e.g., user clicks on location on map [12]).

• Graphical (15; 4%): The use of a visualization to gather re-
sponses, either by asking a user to construct a representation or
by asking a user to adjust a representation (e.g., the position of a
visualized outcome on a plot relative to error bars [3]).

• Standard survey inputs (245; 65.9%)
– Slider (11; 3%): A visual analogue scale depicting a con-

tinuous range.
– Multiple choice (83; 22.3%): A list of discrete options via

radio button, checkbox, etc.
– Likert (91; 24.5%): A stepped rating scale consisting of

5, 7, etc. points along a continuous range.
– Text entry (60; 16.1%): An unconstrained text box, one

constrained to only accept numeric answers, etc.

• Oral (20; 5.4%)
– Think-aloud protocol (6; 1.6%): The user’s utterances as

they interact with a visualization.
– Spoken response (14; 3.8%): The user responds a ques-

tion by speaking aloud.

• Indirect (35; 9.4%)
– GSR tracker (1; 0.3%): The use of a GSR device to cap-

ture skinm response.
– Eye tracking (2; 0.5%): The use of an eye tracker to cap-

ture eye movements.
– Implicit interaction logs (32; 8.6%): Server logs.

The majority of evaluation paths involve use standard survey inputs,
with Multiple Choice and Likert-style inputs being notably more com-
mon than Text-entry or Sliders. Combining this information with the
prevalence of error measures and self-report measures, these results
suggest that many uncertainty visualization evaluations rely on either
self-reported assessments of how well a visualization worked, or accu-
racy measures calculated on highly constrained sets of options (e.g., 5
or less being typical of most multiple choice questions we observed).

The next most common form of elicitation was Implicit, which most
commonly took the form of logging time spent with a visualization.
Also worth noting, 44 (11.8%) paths did not mention how they elicited
a specified measure.

4.3.4 L6: Analysis
The analysis paradigm describes how the elicited measurements are
summarized and used to assess to what degree the desired effects have
been achieved. We distinguished between the following approaches:

• Intermediate analyses
– Qualitative coding (33; 8.9%): Categorizing responses

based on their similarities.
– Summary statistics (310; 83.3%): Sample statistics like

means, variance, or other frequency information.

• Summative analyses
– Frequentist NHST (242; 65%): Null hypothesis signifi-

cance testing within a Frequentist paradigm.
– Frequentist Estimation (12; 3.2%): Frequentist paramet-

ric or non-parametric approaches to infer and report a sam-
pling distribution (e.g., 95% CIs presented in place of sig-
nificance tests).

– Bayesian NHST (0): Null hypothesis significance testing
within a Bayesian paradigm.

– Bayesian Estimation (12; 3.2%): Parametric or non-
parametric Bayesian approaches to infer and report a sam-
pling distribution.

Two approaches (Qualitative Coding and Summary Statistics) tend
to be used as intermediate steps to concluding whether or not a visu-
alization was successful. For example, Summary Statistics are often
presented to add context to results obtained through NHST or Estima-
tion. Qualitative coding is used most often on free form inputs such as
free text responses describing subjects’ spontaneous impressions.

Most paths used Summary Statistics. 77 (20.7%) paths used Sum-
mary Statistics without relying on inferential statistics (NHST or esti-
mation) to draw final conclusions. Not surprisingly, Frequentist NHST
analyses dominate the use of inferential statistics in the uncertainty vi-
sualization studies we coded. We observed only 24 paths that used
estimation, half of which used Bayesian models to estimate bias and
variance separately; and no examples of Bayesian NHST.

5 RESULTS AND RECOMMENDATIONS

In contrast to code frequencies by level of the taxonomy, looking at co-
occurring decisions in evaluation paths provides a more holistic view
of how choices and assumptions at one level of the taxonomy may
influence decisions at other levels. We characterize common paths,
then present recommendations where the patterns that emerge suggest
missed opportunities in light of research on uncertainty elicitation and
comprehension in other fields.

5.1 Characterizing Evaluation Paths
5.1.1 Interpretation & Semantics Paths
While the majority of studies with Performance or User Experience
research questions implied a priori Expected Effects, studies with In-
terpretation and Semantics research questions were less likely to imply
a specific direction of Expected Effect. Even where an Expected Effect
was posited to address an Interpretation and Semantics research ques-
tion (e.g., suggesting that an encoding should be perceived as more
intuitive for presenting uncertainty [8, 64]), Interpretation and Seman-
tics evaluation paths tended to assume a more exploratory approach to
soliciting responses to a visualization. Such evaluations often elicited
unconstrained spontaneous impressions of a visualization (16; 4.3%)
or self-reported actions (17; 4.6%) using written inputs or oral ap-
proaches such as interviews and think-aloud protocols (21; 5.6%).

We observed an important subset of Interpretation and Semantics
that used more constrained tasks to elicit internal representations of a



Fig. 3. Paths with Interpretation & Semantics targets (A), and Decisions (B) and Subjective Confidence as measures (C).

probability distribution. Tak et al. [87] characterized participants’ in-
ternal representations of a probability distribution by repeatedly ask-
ing them to specify the amount of uncertainty at a given location on
a 2D visualization. Similarly, Bisantz et al. [4] asked participants to
describe how much linguistic expressions (e.g., “probable”) captured
a probability value by asking participants to specify the “membership”
of a given probability for an uncertainty representation along a contin-
uous scale from “Not at all” to “Absolutely.” Hullman et al. [39] asked
users to “draw” their prediction for a distribution using a continuous
or discrete representation of probability.

Other Interpretation & Semantics paths focused on eliciting evi-
dence of a user’s mental process to confirm whether people were em-
ploying specific heuristics or biases in interpreting a visualization.
For instance, Correll and Gleicher [11] evaluated uncertainty visual-
izations of confidence intervals to see if participants were subject to
“within-the-bar” bias [70], where outcomes within the visual area of
bar charts were perceived as more likely than those outside of the bar.
Similarly, Correll et al. [12] examine how different color maps for
uncertainty can result in participants under- or over-weighting uncer-
tainty information when making decisions. Neither study’s sole fo-
cus was a comparison with a ground truth correct decision. Instead,
responses were examined for systematic patterns of decision-making
that would indicate a bias or heuristic that might be undesirable in
real-world decision-making tasks. Sometimes self-reports were uti-
lized for this purpose; for example, Padilla et al. [73] used debriefings
to evaluate the use of heuristics, breaking down patterns of responses
by heuristic strategies used to make judgments about uncertainty.

Less commonly, Interpretation & Semantics paths examined how
amount of uncertainty influenced bias or error [46, 47, 68], recogniz-
ing the findings of prospect theory in decision science [49].

5.1.2 Accuracy vs. Decision Quality

Multiple researchers have called for a greater focus on realistic deci-
sion making in uncertainty visualization evaluation [38, 55, 54, 79].
The focus on accuracy and performance measures that we and oth-
ers [38, 55, 54, 79] have observed risks glossing over the difference
between being able to identify information in a visualization and be-
ing able to use it effectively in a decision. Our analysis demonstrates
the differences between these two approaches (Fig. 3).

Assessing Accuracy (L2) was roughly 10 times more common than
assessing Decision Quality (L2) in our sample. Even when Decisions
(L4) were elicited, by posing a hypothetical scenario in which the user
should ’act’, Increasing Accuracy was roughly twice as common com-
pared to Increasing Decision Quality. Paths that did focus on Deci-
sions often provided a more thorough motivation for incentives, from
designing decision payoffs based on formative studies of how people
valued certain outcomes [23] to the development of multiple specific
hypotheses related to the impact of incentives on users’ decisions [9].

5.1.3 Assessing Confidence

Approximately 20% (72) of paths we observed emphasized constructs
associated with one’s subjective sense of confidence, including Sub-
jective Confidence (28), Perceived Risk/Reliability (15), and Per-
ceived Effort/Ability (29). Subjective Confidence and Perceived Ef-
fort/Ability were typically framed as eliciting a participant’s subjec-
tive sense of the accuracy or effortfulness of their own judgment or of
the external (visualized) information. Perceived Risk/Reliability asked
the user to report how likely they thought they were to be affected by
some event, representing an explicitly subjective version of probabil-
ity. Conversely, when studies asked participants to estimate perceived
uncertainty via probabilities, rankings, or other measures that error
was derived from, these constructs were framed as inquiring about ob-
jective information. Subjective confidence was typically treated as a



secondary form of effect, with priority given to the “objective” mea-
sures to determine, for instance, the best of multiple visualizations.

The lack of motivation for how these constructs do or should differ
suggests that subjective uncertainty is not a well defined construct in
visualization evaluation. Indeed, we see clear differences in assump-
tions about how to treat even the measures that are clearly framed as
subjective. Some researchers address confidence and perceived risk
as subjective feelings with no ground truth, aligning with theories that
subjective confidence should not necessarily be expected to behave
like statistical confidence [27]. For example, Blenkinsop et al. [5]
interpret directional shifts in confidence between visualization condi-
tions, saying things like “participants had more confidence” or partici-
pants expressed “low confidence in the use of these displays”. In mak-
ing such assumptions, evaluators maintain transparency about what
they are measuring but sacrifice normative conclusions.

In contrast, some researchers take a normative approach by compar-
ing confidence to a ground truth, assuming that these constructs carry
a similar meaning across individuals, and that that meaning is more or
less directly comparable to an “objective” statistical account. Such ap-
proaches assume that confidence provided for a judgment should be a
signal of a participant’s probability of being correct for that judgment,
or of some objective measure of probability. For example, Ibrekk and
Morgan [41] analyzed intrasubject correlations, looking for an associ-
ation between how sure a participant was about their response being
correct and the correctness (i.e., error) of the response. Correll and
Gleicher [11], on the other hand, evaluated how confidence decayed
as a potential outcome got further from the mean, as well as how con-
fidence correlated with effect size and p-value.

5.2 Recommendations for Evaluators

Our analysis surfaced biases, e.g., toward Performance and Accuracy,
confirmatory goals and analysis, as well as opportunities for expand-
ing the default “toolbox” such as moving beyond standard constrained
HTML input elicitation through Multiple choice and Likert-style re-
sponses. Drawing on our observations and research on uncertainty
comprehension and elicitation from outside of visualization, we pro-
pose recommendations toward more transparent, and internally and
externally valid evaluations of uncertainty visualizations.

5.2.1 R1: Consider Explaining As An End Goal

As described above, studies that posed Behavioral Targets of Inter-
pretation & Semantics were the most likely to work toward a goal
of understanding how or why users acted in certain ways when us-
ing an uncertainty visualization. A simple way to do so is to elicit
participant’s descriptions of how they made a judgment, or what infor-
mation they found helpful, to provide greater context for differences
that might be observed. More sophisticated strategies for explaining
uncertainty visualization including analyzing results for evidence of
heuristic use [11, 12, 40, 70] or prospect theory [47, 48, 68]. We pro-
pose that uncertainty visualization evaluators in particular have a re-
sponsibility to attempt to elicit and explain why observed differences
between conditions might exist due to the complexity of uncertainty
comprehension and associated heuristics.

5.2.2 R2: Use Decision Frameworks for Realism & Control

An accuracy approach can establish, at base, how well a user can ex-
tract a probability or other information necessary to make an informed
decision—but not that the user would know how to use that probabil-
ity to make an informed decision. If estimation error were the only
contributing factor in differences in decision quality between repre-
sentations, designers should simply choose the most perceptually ef-
fective uncertainty encoding (i.e., that which best achieves L2’s goal
of Increasing Accuracy) in all cases. However, different framings can
affect influence whether users apply the information: e.g., frequency
framings can improve Bayesian reasoning about probability [25], per-
haps because frequency framings simplify certain calculations, or per-
haps because people’s added familiarity with frequencies from daily
occurrences makes them feel more confident with the information.

Eliciting decisions, in the form of hypothetical actions like where to
locate an airport or park [58] or which location the user would suggest
a person with certain goals buy [22] allows the evaluator to examine
whether users understand uncertainty in light of a specific decision
context. Other questions that can be answered via decision tasks in-
clude whether a subject feels confident enough to use the information
given the potential rewards or consequences of the decision. In a real-
world decision context, participants have consequences for choosing
incorrectly, and may even have conflicting decision criteria or trade-
offs to make (e.g., balancing the chance of an incorrect snow forecast
against the cost of failing to ice the road [46]).

Economic frameworks, such as Utility Maximization (L4 Derived)
offer one approach to assessing decision quality. Joslyn and LeClerc
[48, 46], for example, give participants a budget and have them decide
whether to salt the road given weather forecasts with different displays,
with costs for failing to salt if it does snow. The remaining budget
after many trials becomes a measure of decision quality. Similarly,
Fernandes et al. [23] follow up a prior study [53] that assessed the
Accuracy (L2) of probability extraction from probabilistic predictions
of bus arrival times with an incentivized experiment where participants
decide when to catch simulated buses. Participants are paid according
to a utility function, and the ratio of their expected payment under the
decisions they made to the payment under an optimal strategy is used
to assess Decision Quality (L4 Derived).

These approaches offer a controlled means of decision assessment
that attempts to include realistic tradeoffs. Given multiple trials, they
can be used to compare how well people can learn to use uncertainty
displays as they make more decisions and receive feedback.1 We ob-
served that in contrast to accuracy studies, researchers who applied
such approaches also tended to include controlled comparisons be-
tween no uncertainty and a visual representation, which can help an-
swer in what situations uncertainty helps or not.

5.2.3 R3: Account for the Ambiguity of Confidence

All of these approaches, when used as described above, do not account
for several known properties of confidence reporting. The “hard-easy
effect” is a counter-intuitive pattern of behavior in which people re-
port overconfidence when presented with a difficult task and under-
confidence when presented with an easy task [18, 66]. This is partially
explained by people’s tendency to report low confidence for incorrect
judgments, especially when made in the face of an easy task [81].
Hence, an analysis like the one used by Ibrekk and Morgan, which
uncovered no clear differences between visualizations based on confi-
dence reporting, may have been confounded by the difference between
confidence reported for a judgment that is likely to be wrong versus
one that is likely to be right. Only two studies in our sample of 86
that explicitly accounted for the difference in confidence reports for
a wrong versus a right answer, by weighting confidence values for a
correct judgment significantly more than those for an incorrect judg-
ment [20, 52].

A second issue that was not explicitly addressed in any of the con-
fidence evaluation paths we observed is that confidence reports are
known to be subject to considerable noise. For example, experience,
effort, and information availability can lead to increased confidence
without comparable increases in accuracy [10, 75], confidence can be
inconsistent even for the same task, and participants may report con-
fidence using idiosyncratic methods like rounding values. This can
mean that subjective confidence is not a direct linear function of sta-
tistical confidence, and that trial order and other contextual factors
should be accounted for. We conclude that evaluators should clearly
state their motivation for why they consider a certain confidence out-
come (e.g., higher confidence) to be superior and account for effects
of binary accuracy and experience (e.g., trial number) on results.

1For learning rates to accurately predict how easy to learn different visual-
izations are in the world, the conditions of decision making in the experimental
task should be a reasonable proxy for decision making in the real world. This
is often difficult to achieve, making learning effects difficult to interpret.



5.2.4 R4: Validate Elicited Responses

Research outside of visualization describes how subjective accounts of
uncertainty can be sensitive to the elicitation method as well as other
properties of a task context or user [72]. We observed several ways
that evaluators in our sample sought to increase the validity of the
responses they gathered. We highlight a few of these techniques to
encourage further use of validations for uncertainty visualization.

Recognize the effects of priors: A few studies allowed for the fact
that users may have different prior beliefs or perceptions of an event
for which uncertainty is shown by using pre- and post-visualization
questions. Herring et al. [35] assessed the change in participants’ be-
liefs about climate change after seeing a visualization. Ibrekk and
Morgan [41] examined whether explaining a visualization helped users
better understand it relative to their base knowledge.

Calibrate the user: In real life, uncertainty is often experienced
as the percentage of the time when an event occurs versus does not
(e.g., catching versus missing one’s daily bus when leaving the house
at 8am). By definition, under uncertainty it is possible to make the
“right” decision (e.g., getting to the bus stop at the optimal time to min-
imize average wait), but still experience the “wrong” outcome (e.g.,
missing the bus). Studies that measured decision quality against util-
ity theory were most likely to provide feedback on the uncertain out-
comes they asked participants about [23, 48, 68], though some studies
that used simpler error measures also incorporated feedback for real-
ism and calibration [9].

Use graphical elicitation to reduce noise: Graphical elicitation of
subjective uncertainty has been shown to reduce error in subjective
probability reporting [28]. Even when the elicited measure is not sub-
jective probability, graphical elicitation increases the likelihood that
participants will process the visualization sufficiently to provide their
best guess. For example, in Belia et al.’s study of error bar interpreta-
tion (a task that is known to be error prone) participants were asked to
adjust the position visualized mean with an error bar so that it was just
statistically significantly different from another mean [2].

Allow for “no answer” as a valid response: A few evaluation
paths specifically allowed for the fact that a participant faced with un-
certain options might find the information too ambiguous to feel con-
fident enough to point to a difference [41, 73]. For example, Padilla et
al. [73] added an additional study in their work to allow for a judgment
that multiple locations along a possible hurricane path were approxi-
mately equal inexpected damage. This approach accounts for the case
where a user is not confident enough to point to a difference.

Account for numeracy and other subject-specific characteris-
tics: In addition to studies that explicitly evaluated how user charac-
teristics impacted use of a visualization (L3 - Understand interactions
with user characteristics), multiple studies in our sample controlled
for ability covariates that could influence performance. For example,
evaluators measured numeracy (e.g., [32, 47, 53]), subjective numer-
acy [73], and spatial ability (e.g., [53, 60]) using established scales.
Some evaluators also employed standard elicitation instruments. This
tended to occur in studies of Bayesian reasoning, where problems are
well defined [47, 60], but we also observed evaluators using standard
scales for aspects of user experience [79], such as the User Experience
Questionnaire [49].

Compare to textual uncertainty: Another way in which eval-
uators sought to increase the validity of their results was by com-
paring uncertainty visualizations to text representations (e.g., [3, 20,
39]) for added insight about why visualizations may or may not have
helped. Including text conditions also acknowledged the potential
for visualizations—and in particular uncertainty visualizations—to
present more information than needed relative to text [80].

6 DISCUSSION: SUBJECTIVE UNCERTAINTY AS CONSTRUCT

Our results suggest a mismatch between how uncertainty comprehen-
sion is viewed in visualization evaluation versus how it is viewed in
fields that deal more directly with cognition (e.g., judgment and deci-
sion making). Our results suggest that visualization evaluators show
either an accuracy-efficiency bias by assuming that it is sufficient to

measure the effectiveness of a visualization by comparing how accu-
rately or efficiently people can make judgments from multiple uncer-
tainty visualizations using standard survey style prompts, or they rely
on explicit value judgments, where users are asked directly whether
uncertainty visualization helped them to make a judgment. Further,
we find a tendency toward confirmation over explanation, where the
majority of evaluation studies do not try to explain the effects that they
find. We also find that simpler alternatives (No uncertainty or text
representations) are considered in a minority of evaluations.

As others have noted, the accuracy-efficiency bias introduces a risk
that the effects identified in a study will not persist in actual decision
tasks, where decision makers are incentivized by real world conse-
quences. We note the importance of decision feedback for calibrat-
ing decisions in experimental scenarios, and we describe how decision
paradigms informed by economic theory can help maintain both the
control and realism that others have argued is difficult to achieve in
this context [55, 79].

Further, evidence from other discplines suggests that people are not
very good at making accurate judgments about their own ability to
make judgments under uncertainty [72]. Again, attempts to under-
stand strategies could prove useful for surfacing when a person’s sense
of confidence in themselves or a visualization is not aligned with the
evaluator’s expectations for use. We also suggest that how well a per-
son can assess their performance should be explicitly modeled where
possible, such as in using confidence reports [81].

Possible threats to validity arise when evaluators seek to confirm
hypotheses without also seeking to understand and explain why dif-
ferences exist between uncertainty visualizations. One possible rea-
son for differences in user performance is that people use heuristics to
simplify judgments from uncertainty (e.g., [26, 51, 50, 92]). Finally,
omitting simpler presentations makes it less likely that evaluators will
realize when uncertainty information is unnecessary for the task, or
being disregarded by the user. The evaluation paths we observed that
attempt to uncover strategies used to respond to a task therefore pro-
vide an important lesson for future evaluation work.

The studies in our sample rarely, if ever, acknowledged differences
among alternative conceptions of uncertainty such as risk, ambiguity,
and error. Research outside of visualization provides empirical evi-
dence for different conceptions of uncertainty held by decision mak-
ers [34, 36, 60, 65]) and may be informative for visualization re-
searchers by prompting deeper consideration of what subjective un-
certainty means in the context of visualization use.

7 CONCLUSION

We present a taxonomy of methods for evaluating uncertainty visual-
izations and describe the results of a qualitative analysis applying our
framework to 86 publications which represent the state of uncertainty
visualization evaluation. Our results indicate that current evaluation
practices focus primarily on a small set of Performance and User Expe-
rience concerns in order to compare uncertainty visualization designs.
While these studies about Performance and User Experience tend to
seek “confirmatory” evidence for the superiority of some visualization
technique, a much smaller set of studies addressing issues of Interpre-
tation tend to be more “explanatory”. We characterize overall trends
in evaluation paths (i.e., the co-occurrence of codes in our taxonomy)
which indicate distinctions between methods for measuring Accuracy
and Decision, as well as different methods for eliciting and assessing
Subjective Confidence. Drawing on related research in judgment and
decision making, we recommend specific steps that researchers should
take when designing uncertainty visualization evaluations in order to
strive for valid and transparent findings.
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