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Fig. 1. This visualization was taken from a Tableau Public workbook [11] to illustrate the value of semantic color encoding. Left: The
Tableau default colors are perceptually legible, but conflict with the data semantics (‘Tomatoes’ are pink, ‘Corn’ is green). Center: The
Tableau author matched the colors to the data semantics (red for ‘Tomatoes’, yellow for ‘Corn’), which makes it easier to identify the
different types of vegetables in the graph. Right: Our algorithm automatically created a similarly effective result.

Abstract—When data categories have strong color associations, it is useful to use these semantically meaningful concept-color
associations in data visualizations. In this paper, we explore how linguistic information about the terms defining the data can be used
to generate semantically meaningful colors. To do this effectively, we need first to establish that a term has a strong semantic color
association, then discover which color or colors express it. Using co-occurrence measures of color name frequencies from Google
n-grams, we define a measure for colorability that describes how strongly associated a given term is to any of a set of basic color
terms. We then show how this colorability score can be used with additional semantic analysis to rank and retrieve a representative
color from Google Images. Alternatively, we use symbolic relationships defined by WordNet to select identity colors for categories
such as countries or brands. To create visually distinct color palettes, we use k-means clustering to create visually distinct sets,
iteratively reassigning terms with multiple basic color associations as needed. This can be additionally constrained to use colors only
in a predefined palette.

Index Terms— linguistics, natural language processing, semantics, color names, categorical color, Google n-grams, WordNet, XKCD

1 INTRODUCTION

Consider the barchart in Figure 1, where the colors label different
types of vegetables. The first coloring is a well-designed default cate-
gorical palette, with colors that are optimized for legibility and mapped
to basic color names. While perceptually legible, there is no seman-
tic relationship between the colors used in the visualization and those
commonly associated with these data. To find the bars associated with
‘Corn’, the viewer needs to first find ‘Corn’ in the legend, discover
that it is green, then remember this while looking at the visualization.
In contrast, the other two colorings apply a semantic coloring defined
by typical colors for these data items. ‘Corn’ is yellow, ‘Tomatoes’ are
red, etc., which makes the encoding easier to discover and remember.
One example was designed by the author of the visualization, who
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felt strongly enough that this was important to hand-color 63 differ-
ent vegetables in the associated dataset. The other was automatically
generated by the algorithms described in this paper. The goal of this
research is to aid in the semantic mapping of coloring to data, both by
presenting a specific technique and by discussing the challenges and
trade-offs discovered in this work.

The importance of semantic coloring depends on the domain. A
visualization of Crayola colors [3], for example, needs the color
names and color values to match. To do otherwise would be very
confusing, potentially creating cognitive interference similar to the
Stroup Effect [33]. Objects with strongly associated colors, like fruits,
vegetables, political parties, and brands also benefit from semantic
coloring. In contrast, a chart of sales performance colored by region
or sales team has no inherent semantic coloring. An automatic system
for assigning semantic coloring, therefore, must first determine the
colorability of the objects in the category, then determine the appro-
priate coloring. In this paper, we focus on coloring for categorical
labeling so we must also consider the problem of creating a palette
of distinctly different colors for a set of objects, not just colors for
individual terms. Finally, semantic coloring is often defined by the
context. For example, ‘apple’ as a fruit is red or green, but ‘apple’ as a



brand is white or silver gray. Our approach, which is based on natural
language processing (NLP), provides a way to cleanly discriminate
these cases.

This work makes the following contributions:

1. We define whether a term is colorable by modeling its semantic
co-occurrence with the Berlin & Kay basic color names using the
Google n-grams corpus [6, 34]. This extensive corpus contains
English word n-grams (from uni-grams to 5-grams) and their ob-
served frequencies calculated over one trillion words from web
page text, creating a rich vocabulary for harnessing language us-
age of words that could be associated with color. The results
of this analysis are a colorability score and a set of basic color
names strongly associated with the term.

2. We describe a new method for finding an appropriate color value
by querying and analyzing Google images. Unlike prior work,
this method uses the basic colors associated with the term along
with further linguistic analysis of the term to refine the query.

3. We present an alternative query method that uses semantic con-
text such as ‘brand’ or ‘country’ to refine the image search. This
makes ‘apple’ red or silver depending on its context.

4. For palette generation, we use k-means clustering in CIELAB
colorspace to define a set of visually distinct colors. The result
is a set of colors returned by the image search and modulated
by the clustering. Similar to other work in data palette genera-
tion [29], we can leverage the fact that many terms are associ-
ated with multiple basic colors to avoid assigning similar colors
to different terms. For example, since ‘apple’ is associated with
red, yellow and green, we can assign green to apple to avoid as-
signing red to both ‘apple’ and ‘cherry’. We can also constrain
the clustering algorithm to match a pre-defined palette.

We start with a discussion of previous work, with special atten-
tion to the work by Lin et al. [29]. While there is extensive literature
on color names and semantic color association, this is the work most
similar to ours because it is specifically about categorical palettes for
visualization. We then discuss the various steps in our process: The
colorability metric, mapping names to colors, both with and without
semantic context, and palette generation. We finish with a discussion
and future work.

One challenge in this type of work is validation. There is no sin-
gle answer for the ‘best’ semantic color, as both language and color
are highly contextual. We validate our results both by direct com-
parison to Lin et al.’s work and by supplying visualization examples
from the Tableau Public website [11]. In addition, we analyze a large
crowd-sourced color name data set that maps names to colors, which
is publicly available on the XKCD website [37].

2 RELATED WORK

2.1 Color Names and Cognition
Strong links between color and language are well established, and
there are literally thousands of research papers on the topic. One
vector of research focuses on basic color names, studying how these
names are represented in different languages and cultures. Berlin &
Kay’s studies on basic color terms are considered foundational in this
area [13], and their extension to the World Color Survey [26]. Of
relevance to this paper, it establishes that for English (and many sim-
ilar European languages), there are 11 basic color names: red, green,
blue, yellow, orange, purple, pink, brown, black, white and gray. Fur-
thermore, there is strong agreement on the color stimuli, in this case,
defined by a set of Munsell color chips that are exemplars of these
names.

That there is a fundamental link between language and color cogni-
tion is demonstrated by the Stroop effect [33]. When the color of the
letters is in conflict with the color described by the word (for exam-
ple, the word ‘blue’ is written in red letters), subjects find it harder to

name the color of the letters. A similar but smaller effect was found for
words with strong color associations, such as ‘blood’ and ‘grass’ [19].
This is recognized as interference between the color term evoked by
reading (language) and the color name associated with the perceived
color.

In visualization, the work by Lin, Fortuna, Kulkarni, Stone and
Heer [29] experimentally demonstrated that semantically naming the
categorical colors used in a visualization improved cognitive perfor-
mance. They hypothesize that at the minimum, viewers can more eas-
ily memorize the categories, reducing the need to access the legend.
We use this work as the most concrete justification for working on
semantically-resonant coloring for visualization. To run their experi-
ments, they selected 40 categorical value sets and evaluated their col-
orability using crowd-sourced experiments. We use their same datasets
as validation for our colorability algorithm. They also asked their sub-
jects to create an appropriate palette for these datasets, choosing only
colors from a fixed set of expertly designed colors (Tableau 20). In
some cases, they also asked an expert to create an appropriate palette.
We applied our palette generation algorithms to the same data and find
that our results compare favorably with both the crowd-sourced and
expert results.

2.2 Color and Language
Language has a long history of resources for describing color. Firstly,
a word has a strong association with color, especially when color is
a salient feature of the concept it refers to (for example, ‘sky’ (blue),
‘lemon’ (yellow)) [18, 27]. Secondly, color names pertaining to pig-
ments and dyes are often derived from the source, such as ‘indigo’,
from the Indigofera Tinctoria plant. Thirdly, many languages have
morphological and syntactic processes that create complex color terms
out of simple color terms (for example, ‘blue-green’, ‘yellowish’, and
‘pale pinkish purple’). Finally, many linguistically simple terms that
denote subtypes or ‘shades’ of colors are denoted by other terms. For
example, ‘scarlet’, ‘crimson’, ‘vermillion’, ‘puce’, ‘burgundy’, and
‘maroon’ are among the more commonly named shades of red [14].
This suggests that linguistic data sources that consider the semantics
of color names might provide for better reference, selection and re-
trieval of colors for various tasks, including for categorical palettes in
data visualizations.

In the 1950s, the U.S. National Bureau of Standards created a color
naming dictionary [28] to both define a standard set of color names
by partitioning the Munsell color solid [38] and to create a dictionary
of commercial color names, defined in terms of their Munsell specifi-
cation and their standard name. While this standardization effort was
not widely adopted, the use of color names to represent colors in com-
merce continues today. Go to any paint store and the color samples
are labeled with both a technical code for constructing the paint and a
semantic name, designed for some combination of descriptiveness and
memorability. The Sherwin-Williams red collection provides exam-
ples such as ‘Positive Red’, ‘Eros Pink’, ‘Radish’, ‘Brick’ and ‘Coral
Bells’ [10]. HTML 5 supplies 140 color names, from the basic (Blue,
Red DarkGray) to the exotic (Chocolate, Chartreuse, BurlyWood) [8].
The power of these names is not their accuracy, but their memorabil-
ity and ease of use. It is literally impossible to discuss color without
naming it in some way. ‘DarkBrown’ or even ‘Chocolate’ is easier to
remember and specify than the associated hex code.

Havasi, Speer and Holmgren [21] used a crowd-sourced semantic
net called ConceptNet to associate words and colors, both for objects
and concepts. Like our work, they link names with colors using as-
sociation with the Berlin & Kay basic names and perform validation
with the XKCD database. While similar conceptually, their technol-
ogy is quite different. While we use n-gram analysis to determine the
relationship between terms and basic colors, they use the links pro-
vided in ConceptNet. They do not use images to determine colors, but
depend instead on finding color centroids semantically. In addition,
their focus is on returning one ideal color, not a set of color options.
Therefore, for ‘apple’ they would return only red.

Lindner, Bonnier, and Süsstrunk [30] automatically map semantic
expressions to colors, including a colorability score they call a “sig-



nificance metric.” They use annotated images from the Flickr online
image sharing community to build the semantic relationship, mining
the annotations to find images that correspond to the expression to be
colored. They then generate a 3-dimensional histogram of the colors
in the selected images These are constructed such that peaks corre-
spond to image sets with a strong semantic coloring, which can be
used to define the related color. Our algorithm uses Google n-grams
and basic names to establish colorability, then searches images us-
ing the associated basic names plus additional semantic information to
find appropriate coloring.

In Lindner and Süsstrunk [32] the authors use Google n-grams to
generate a large vocabulary of frequently-used words, then download
60 related images using Google Image Search. They apply the same
image analysis as their previous work to create characteristic colors for
the term. Using “hue templates” they create color palettes associated
with the term, which they compare to those found in Adobe Kuler [1].
These are not data palettes, with a semantic coloring for each category,
but rather design palettes evoked by the specified term.

2.3 Mapping Names to Colors

A common way to map names to colors is to fit statistical models to hu-
man judgements of color-name associations. The data for these models
is created by showing people color patches and asked to name them,
sometimes freely, and sometimes with a constrained vocabulary. The
oldest and most extensive online color naming survey was established
by Nathan Moroney in 2002, and is still collecting data [36, 35]. Our
work uses the model created by Heer & Stone [22], which uses the
data created by XKCD author Randall Monroe [37]. The problem
with such databases for categorical color association is that the terms
in the database are predominantly descriptors of color (for example,
‘light blue-green’) rather than terms common to categorical data. Cat-
egorical data typically does not directly describe colors, but are rather
concepts with a strong color association. Therefore, we need a way to
map an arbitrary word or phrase to a color.

Our work and Lin et al. address this problem by searching Google
images. Both algorithms leverage the simpler and more semantic col-
oring of clipart. Our algorithm, however, uses the basic color names
returned by the colorability score in the query and query expansion of
the term to restrict our search to images that are relevant and already
have the color of interest. Lin et al. map directly from the term to
images, and must do further processing to cull out irrelevant images
and find the dominant color. We further refine the query with addi-
tional semantic information to define the context. The value of our
NLP approach makes these sort of refinements straightforward.

Work by Lindner et al. [31] uses Google Image search to generate
a multi-lingual color thesaurus. They start with a set of color terms
from the XKCD dataset translated into multiple languages, but use
Google Image Search to define the associated colors. They use the
annotations on the images to create the linguistic link, and apply an
additional restrictions to match the different languages. They use a
3D histogram to generate the key color for each image. One problem
with their approach is that a word may have several different colors
associated with it. Instead of distinguishing these cases, they combine
them to get a sometimes surprising result.

In computer vision, Van De Weijer et al. [43] use the Berlin & Kay
basic terms with Google images to find representative pictures of col-
ored objects. The work of Schauerte & Stiefelhagen [41] expands on
their results. Their goal is to identify colored objects in an image,
such a ‘red car’, to help with search and object identification. This
requires finding pixel colors that are most likely to represent a red car
in an image, which is quite different from using images to generate a
good categorical representation. Instead of clipart with representative
colors, their work finds natural images more useful.

3 N-GRAM COLORABILITY MEASURE

To provide a color for a categorical value, we need a way to determine
how strong the value’s association is to a color or a set of colors. For
example, terms such as ‘mint’ and ‘rose’ are more strongly associated

with colors than school subjects such as ‘math’ and ‘science.’ In addi-
tion, the same term may have multiple color values such as ‘red’ and
‘green’ for Christmas. Therefore, we need to determine whether a se-
mantically meaningful color can be assigned to a term, and if so, what
the basic color could be.

Using Google n-gram co-occurrence of the data term with the basic
color name, we compute a colorability score that reflects the probabil-
ity that a basic color described by Berlin and Kay [13], is associated
with the term. We validate this colorability score by applying the score
to analyze the XKCD dataset.

Fig. 2. Normalized NPMI values for ‘charcoal’ co-occurring with each
of the Berlin & Kay terms between the years 1920 and 2006. We con-
sider NPMI scores ≥ 0.5 for computing the final colorability score of a
term. Here, you can observe that ‘charcoal’ and ‘gray’ co-occur most
frequently, with an overall colorability score SNPMI(charcoal) = 0.7512.

3.1 Constructing N-Gram Terms and Phrases
An n-gram is a contiguous sequence of n items from a given sequence
of text or speech. Searching a corpus of text for the n-gram returns a
number that indicates how often that sequence appears in the corpus.
We apply an unsupervised corpus-based approach for computing color
relatedness [23, 24]. To have sufficient coverage of co-occurrence of
term, we use an extensive corpus with co-occurrence statistics called
Google n-grams [34]. The Google n-grams dataset is a publicly avail-
able corpus with co-occurrence statistics of a large volume of web text
containing n-grams (from uni-grams to 5-grams) and their observed
frequencies calculated over one trillion words from web page text.

The data terms in the XKCD database vary from single words
(‘blue’, ‘green’, ‘indigo’, ‘ochre’) to multi-word phrases (‘sky blue’,
‘light yellow ochre’, ‘faded indigo’). Each term is combined with each
of the 11 basic color names in turn, where the names are: red, green,
blue, yellow, black, white, gray, orange, purple, pink, brown. (For ex-
ample, ‘faded indigo red’, ‘faded indigo green’, and so on.) The basic
n-gram analysis simply returns a value proportional to the number of
occurrences. Terms that are strongly associated with colors return a
higher score than those that are not. An example is shown in Figure 2,
‘charcoal gray’ is most common, followed by ‘charcoal black’, but
‘charcoal yellow’ is not found.

There are some special cases included in the XKCD analysis. If the
phrase ends in a basic term (For example, ‘charcoal gray’), the term
is not repeated. That is, the values analyzed will be ‘charcoal gray’



not ‘charcoal gray gray’. However, the test with red will be ‘charcoal
gray red’. Many of the XKCD terms are basic color terms like ‘blue’
and ‘red’, derivatives of basic color terms with descriptors such as
‘dark green’ or ‘pale pink’, or compound terms such as ‘purplish pink.’
However, there are also entities in the dataset that elicit strong color
associations such as ‘lemon’, ‘cornflower’, ‘blood’ and ‘chocolate.’ If
a part-of-speech analysis of the phrase can identify an object, and that
object does not already exist in the database, that object is also paired
with each of the basic color terms. For example, ‘charcoal gray’ has
the object ‘charcoal’ so both ‘charcoal gray blue’ and ‘charcoal blue’
are tested, and charcoal is added as term to the database.

We then compute a colorability score on the n-grams from the cor-
pus, to form probability estimates as described in the following sec-
tion.

3.2 Measuring Term Color Co-Occurrence
We employ a Pointwise Mutual Information Measure (PMI) [17], an
information-theoretic measure that quantifies the probability of how
tightly occurring a given term and a Berlin & Kay color term are to the
probability of observing the terms independently.

The PMI of a term t with one of the Berlin & Kay basic color terms
tcolor, is defined as:

PMI(t, tcolor) = log
p(t, tcolor)

p(t)p(tcolor)
(1)

It should be noted that PMI(t, tcolor) is not symmetric
(PMI(t, tcolor) 6= PMI(tcolor, t)) as PMI(t, tcolor) and PMI(tcolor, t)
represent two different n-gram co-occurrence events.

To measure the strength of the association, we compute the PMI
over a localized context (PMIlocal) amongst all the terms occurring in
the book corpora in the Google n-grams dataset. This localized PMI
function is as follows:

PMIlocal(t, tcolor) =
1

2C

para

∑
C=1

PMI(t, tcolor) (2)

where C is the contextual window size. C is computed by a distance
vector measuring the number of salient terms (not stop words) between
the origin (original term t) and the other term tcolor [39]. For example,
C = 1 for t and tcolor being adjacent to each other. We constrained
the maximum context window to be a paragraph of text in the n-gram
corpus, i.e. we ignored any co-occurrences of the two terms that are
occurred outside a single paragraph context. This tends to minimize
the number of false positives and the sensitivity of the PMI score w.r.t.
larger context window sizes.

We then normalized each localized PMI score as follows:

NPMI(t, tcolor) =
PMIlocal(t, tcolor)

log[p(t, tcolor)]
(3)

This results in a probability score between 1 and 0, with 0 for never
occurring together and 1 for complete co-occurrence. Figure 2 shows
the individual NPMI scores for ‘charcoal’ plus the 11 Berlin & Kay
color terms.

The causal link between language use and the statistical patterns of
co-occurrence is not necessarily linear, and the Google n-gram cor-
pus often reflects shifts in human language and cultural usage over
time [34]. For example, many of the art pigments such as ‘Geranium
Lake’ were popular in the late 1800s and early 1900s, but then rapidly
declined in usage in recent years. However, the term can still be iden-
tified to be associated with color. Since we are more interested in how
colorable a given term is and less about its lexical usage at any given
time, rather than averaging the PMI scores of an n-gram over time,
we ignore any low co-occurrence values, and preserve peaks of high
values of co-occurrence in any given year. In practice, we found that
a threshold of 0.5 tends to minimize any co-occurrence noise with the
term and preserve the more salient color associations.

Once we compute the individual NPMI values for a term with every
one of 11 Berlin & Kay basic color terms, we compute the overall
colorability score SNPMI of that term t as follows:

autumn

leaves charcoal fuchsia

raspberry

sherbet

black

blue

brown

gray

green

orange

pink

purple

red

white

yellow

Score

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.13

0.00

0.00

0.00

0.14

0.19

0.14

0.44

0.25

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.55

0.53

0.57

0.87

0.84

0.88

0.88

0.75

0.75

0.55

0.55

0.53

0.58

Fig. 3. Table showing average NPMI scores for a word or phrase with
each of the 11 Berlin & Kay basic color terms. The final colorability
score is an average of the individual NPMI values >= 0.5. We observe
that ‘charcoal’ has a high association with gray. Similarly, red, pink and
purple for ‘fuchsia’; red, orange and brown for ‘autumn leaves’; red and
pink for ‘raspberry sherbet.’

SNPMI(t) =
1
n

n

∑
i=1

NPMI(t, tcolor) (4)

where n is the total number of NPMI values ≥ 0.5. The table in Fig-
ure 3 shows the individual and combined scores for the terms ‘fuchsia’,
‘charcoal’, ‘autumn leaves’ and ‘raspberry sherbet’.

3.3 Visualizing the Colorability Score
The XKCD color naming dataset is a set of name-color pairs collected
online from 152,401 users (103,430 self-reported males, 41,464 fe-
males, and 7,507 declined to state). Filtering for spam responses
creates 3,252,134 color-name pairs spanning 2,956,183 unique RGB
triples and 132,259 unique color names. Previous work by Heer &
Stone [22] reduced this set to 146 color terms and provided a model
for transforming names into colors, and colors into names. We used
this XKCD corpus of color names to validate our colorability score.

We started by lightly pruning the spam-filtered database by remov-
ing non-alphabetic characters, stop words, performing spelling correc-
tion, and stemming plurals. We then applied our algorithm to the re-
maining 114,369 terms and created a dataset of all terms whose score
was greater than or equal to 0.5. This dataset has 6,540 unique color
terms in it, their n-gram score, and the individual scores for each basic
name. In addition, it indicates which terms were retained in Heer &
Stone’s reduction of this same data. We analyzed and visualized this
data using Tableau, which made it possible to inspect the results of
the scoring for all the retained terms. We looked to see that the colors
selected by Heer & Stone’s analysis got high scores, that the top scor-
ing names were plausibly highly colorable, and that the basic colors
ranked highly for each term seemed appropriate.

We created plots mapping terms to the n-gram score, as shown in
Figure 4. As expected, there are a small number of highly colorable
terms and a long tail of moderately colorable ones. In this plot, the
minimum n-gram score is 0.6, which gives us a plot of 900 rows. The
terms selected by Heer & Stone are highlighted (orange marks), and
we can see them to be scored highly colorable. The lowest scored term
in Heer & Stone is ‘bright yellow’ with a colorability score of 0.723.
The highest scoring name not in their dataset is ‘olive green’, with a
score of 0.854.

Figure 5 shows the top 20 colors with their scores broken down
by each of the 11 basic color names. That is, each bar indicates the
strength of the association between the term and a specific basic color
name. The color of the bar matches the basic name, its length and



Term

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ngram Score

In Heer & Stone
no

yes

Filtered Ngram Score
0.6 to 0.99

Fig. 4. The top 900 terms in the XKCD dataset (vertical axis) vs. their
colorability score. At this scale, the term names are too small to display.
Orange indicates that the term was in the Heer & Stone set.

label indicate the score for that term. For each term, all basic names
with scores over 0.5 are shown. As expected, most of the basic names
are included here and associate only with their own color name, i.e.
blue with blue, green with green, etc. The terms ‘turquoise’ and ‘teal’,
however, are associated with both blue and green, ‘lime green’ with
yellow and green, and ‘fuchsia’ with red, green and pink.

Term

0.0 0.5 1.0 1.5 2.0 2.5
Value

blue

purple

pink

brown

red

light blue

teal

gray

orange

light green

yellow

magenta

sky blue

violet

turquoise

lime green

light purple

lavender

fuchsia

dark green

0.8895

0.8025

0.9888

0.8488
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Fig. 5. Top 20 colors and the scores of the associated basic name.
The color of the bar indicates the name, the length and label are the
colorability with respect to that name.

We found it useful to categorize the terms by their terminal word,
which was typically either a simple color term or an object. This ad-
ditional structure makes it easy to see, for example, all the phrases
that end in ‘apple’, then to evaluate how well the n-gram algorithm
has identified the corresponding basic colors. Figure 6 was chosen to
show different types of results. Some terms have a single correspond-
ing color (‘amethyst’, ‘anthracite’, ‘anger’). ‘Amber’ has multiple re-
lated colors, all of which are somewhat similar to its true color. The

colors for ‘apple’, however, (red, yellow and green) are more distinctly
different types of apples. The pink term in ‘apricot’ is somewhat unex-
pected, but the term ‘apricot pink’ really is more common than ‘apricot
orange’ in the Google corpus.simple term Term
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Fig. 6. A typical sampling of color categories defined by the terminal
word in the phrase and the associated basic color terms.

Using the terminal terms to structure the visualization, it was pos-
sible to inspect and qualitatively evaluate the n-gram algorithm for the
entire 6,540 entry dataset. It was easy to verify that within a category
defined by a terminal term the associated basic colors were similar
and plausible. A common pattern is to have one or two basic col-
ors common to all phrases in the set, with the addition of additional
terms defined by the modifiers. For example, the all phrases ending in
‘lavender’ include a strong purple component but ‘grayish lavender’
includes a gray component as well.

Splitting off the terminal term revealed some interesting structure in
this dataset. There are only 907 unique terminal terms. Phrases ending
in a basic name (For example, ‘lime green’, ‘sky blue’, ‘light gray’)
account for over half of the dataset (3,830 rows, or nearly 59%). The
distribution within these names is highly skewed. Phrases ending in
the term ‘green’ dominate, making up 17% of the database. At the
other end of the distribution, 615 terminal terms occur only once, and
111 only twice.

4 MAPPING NAMES TO COLORS

Given a colorable term, we need to find its semantically resonant color.
Typical color naming data, however, is created by asking people to de-
scribe a displayed color in language. As we have just discussed in the
previous section, the result is primarily words associated with describ-
ing color, such as ‘light sky blue’. For categorical color assignment,
what we need is a way to map data categories (which are rarely names
describing colors) to an appropriate color value.

We now describe a general purpose algorithm that combines se-
mantic analysis including the basic name to search Google images and
returns a representative color. We validate this approach by compari-
son to the previous work by Lin et al. and to a selection of colors in
the XKCD database.

4.1 Search Parameters
For any word or phrase, the Google n-gram analysis provides a col-
orability score and a list of basic colors that are strongly associated
with that phrase. This information is used to determine if a given term
is colorable, and if so, the list of basic colors is used as a query param-
eter to obtain images with those dominant colors.



Similar to Lin et al. [29], we employ Google’s Image Search
API [5] to retrieve images based on the input term. We also add an ad-
ditional parameter ‘clipart’ to the search to rank clipart images higher
than photos, as the canonical colors representing clipart imagery tend
to more directly correspond to the basic color options. However, to
retrieve images that correlate more closely with the basic colors from
Google n-grams, we use a color based feature in Google image search,
called a dominant color filter that provides 12 common color options
for mapping to common color names. These include the 11 Berlin &
Kay basic color terms and an additional option ‘teal.’ The search API
allows a dominant filter parameter to be set with one or more of these
colors and returns the images in which the selected color is one of the
dominant colors based on a frequency feature of interested colors to
rank the images [25]. As parameters to this dominant filter, we assign
the basic color list obtained from Google n-grams as well as an option
for ‘teal’ if both ‘blue’ and ‘green’ color names exist with the n-gram
colorability score.

4.2 Query Expansion and Image Retrieval
While the term and the basic color names can be used as input queries
to an image search engine, the query words may be different than the
ones used in the metadata describing the semantics of the imagery.
That means a gap exists between the query space and document repre-
sentation space, resulting in lower precision and recall of queries. We
use query expansion to augment related terms to each of the queries
for improving search precision and recall.

For additional query terms, we use Wordnet’s ontology to obtain
the Least Common Subsumer (LCS) of the term’s synset and the color
synset (color.noun.synset.01) if it exists [40, 42]. The LCS of two
synsets A and B, is the most specific concept which is an ancestor of
both A and B, where the concept tree is defined by the is-a relation. By
computing the LCS between the term and the color synset, we get the
most generalizable entity synset that has a color association to it. For
example, the LCS of ‘taxi’ , ‘rose’ and ‘turmeric’ are ‘automobile,’
‘flower’ and ‘spice’ respectively.

Once the query is executed, the result set of images returned are
accompanied by a normalized confidence measure from the Google
search engine. The confidence measure is a descriptor that represents
two aspects of relevancy - first being the relevancy of the image’s meta-
data to the input query, and second how close the dominant region
color of the image matches the dominant color filters specified, and if
so, which of those color filters does the dominant region correspond to.
We use a subset of the image results with a confidence score >= 0.65.

Since the images in the search results with higher confidence scores
already contain dominant color regions matching the dominant color
filter specified, we do not have the overhead of performing background
detection for improving pixel selection as described in [29]. However,
the search service does not provide the actual R,G,B color values of
these dominant color regions. We apply clustering on the images to
determine the actual color of that dominant color region. The images
are clustered using a hierarchical agglomerative clustering algorithm
to cluster large homogenous color regions without defining the number
of clusters ahead of time [45]. We then iteratively proceed in decreas-
ing order of cluster size to determine the largest common set of clusters
across the images.

Input term Top clustered images  Canonical color

taxi

lizard

saffron

Fig. 7. From top to bottom: Canonical colors retrieved from Google
Images using dominant filtering for ‘taxi’, ‘lizard’ and ‘saffron.’

This is illustrated in Figure 7, which shows the highest scored im-
ages returned for each of three terms. The taxi example shows the
images returned for the dominant filter yellow. For each image, neigh-
boring pixels are iteratively merged to find the largest homogenous re-
gion which is some shade of yellow. The final canonical color shown
is an average of the color values of each of the most dominant color
regions of the images. Similarly, results show green for ‘lizard’ and
orange for ‘saffron.’

4.3 Validation

For our first validation, we algorithmically selected 36 colorable ob-
jects from the XKCD database, colored them, and visually compared
them to the values returned by Heer & Stone. In addition, we com-
puted the CIEDE2000 color difference between the colorings. The
results, which range from 22.1 to 0.9 are shown in Figure 8. While
visibly different, our algorithm returned colors that are a reasonable
match to the color term.
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Fig. 9. Results for Lin’s algorithm (A), expert (E) and our algorithm (G).

We then compare our results to Lin et al.’s work. In their seman-
tic coloring paper [29], they created a set of four palettes and applied
both their algorithm and asked an expert to color the same categories.
We took the collection of terms from these palette and colored them
using the method described in the previous sections. The results for
terms we found colorable are shown in Figure 9. It can be seen that
the correspondence is generally very good, though some of our colors
are darker than ideal. These results illustrate several differences be-
tween our approach and Lin et al.’s. Firstly, we color only a subset of
the terms as we are culling based on our colorability score. Secondly,
our results treat each term independently so both ‘apple’ and ‘cherry’
are red in the Fruits Palette, and do not distinguish between ‘apple’
the fruit and ‘apple’ the brand. Finally, both Lin et al.’s algorithm,
which returned only colors from the Tableau 20 default palette, and
their expert carefully used colors that worked well as categorical col-
oring. Our results have no such constraint on them, resulting in several
that are too dark and one that is too light (‘corn’).

In their work, Lin et al. collected 40 palettes, ranked them by col-
orability, then selected 10. Each of these palettes was colored both us-
ing their algorithm and by colors selected in a Mechanical Turk study.
All colors in these palettes were selected from the Tableau 20. Of the
57 terms in these 10 palettes, our algorithm successfully colored 39 of
them, with results comparable to the example above. In addition, we
applied our algorithm to all 246 terms in the the full set of 40 palettes
and successfully colored 114 of them, again with results comparable



Fig. 8. Comparison of 36 colorable object terms showing the XKCD colors determined by Heer & Stone, the colors from our algorithm obtained
through Google Image Search, and the CIEDE2000 distance between them.

to the examples above. Additional examples are shown in Figures 10
and 11.

4.4 Expanding Semantic Context for Color Assignment
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Fig. 10. A comparison of Lin et al.’s algorithm and their expert’s selec-
tion, with our algorithm’s color assignment using n-gram analysis and
using semantic context. Here, the category field ‘Brands’ from Lin et
al.’s dataset is used to obtain symbolic logo color representations for
the terms in the semantic mapping.

The current algorithm depends on the Google n-grams corpus to
determine the colorability of a term. While the corpus is extensive, it
is definitely not exhaustive, and may not contain co-occurrence trends
for certain terms that are associated with visual symbols, particularly
Company and Brand names. In Figure 10 for the ‘Brands’ category,
Google n-grams does not return any value for ‘AT&T’, ‘Home Depot’,
‘Starbucks’ and ‘Yahoo!’, and the color for ‘Apple’ is that of a fruit
rather than the company ‘Apple’. However, we can use additional se-
mantic context to find colors for these terms. This context could be
supplied from the name of the data field, provided as input by the user,
or by additional semantic analysis.

Given a word or phrase that describes the category, we use an
approach similar to the one Setlur & Mackinlay [42] described to
find icons associated with data. We first compute the semantic re-
latedness of the category description to the symbol synset (sym-
bol.noun.synset.02) in Wordnet. Similar to the query expansion pro-
cess in subsection 4.2, we find the Least Common Subsumer (LCS) for
the category. For example, for the category ‘Countries’, the LCS with
the symbol synset is ‘flag’ while ‘Brands’ and ‘Companies’ are asso-
ciated with ‘logo’. This highest scoring symbolic word is then used
to create a query to retrieve symbolic clipart imagery from Google
images.

From the highest scored images for each term, the dominant colors
are extracted as described in the image retrieval process of subsection
4.2. The final canonical color shown is an average of the color values
of each of the most dominant color regions of the images, as shown in
Figure 10.

5 PALETTE GENERATION

We have shown that given a colorable term, we can determine the most
likely color(s). However, color-encoding for data visualizations tends
to be for a set of terms, as opposed to a single one. Effective categor-
ical color palettes encode visually distinct colors to different categori-
cal values for distinction, in addition to the color being as semantically
meaningful to the corresponding value.

5.1 Color Palette Assignment for a Set of Terms
Figure 9 shows our algorithm picking individual colors for each term.
Without any context of the other color assignments in the set of terms,
similar colors may be assigned as seen for terms ‘Apple’ and ‘Cherry.’
This is not optimal for generating a visually discernible palette of col-
ors. To determine if there are collisions in colors for a set of terms, and
if so, search for alternative color assignments, we perform clustering
on the color values in the set.

We apply the k-means clustering algorithm to color quantize the
input set of colors into visually discriminable clusters [20]. The algo-
rithm tries to minimize total intra-cluster variance,

V =
k

∑
i=1

∑
x j

∈ SiDist(x j,µi) (5)

where Si represents k clusters, i = 1,2..k at a given iteration and µi
represents centroids of all the points x j ∈ Si, and Dist(x j,µi) is the
Euclidean distance measured in CIELAB.

Since we ideally want each color value to represent one color palette
item, we partition the k input color terms into k initial singleton sets,
where k represents the total number of items in the palette and each
centroid directly corresponds to the single color value in each single-
ton set. As the number of sets is equal to the number of partitions, we
do not encounter the problem of randomly picking a number of sets
for convergence that is typical of the k-means algorithm.

Every color term has one or more associated canonical color val-
ues. For example, ‘Apple’ has canonical color values of red and green,
while ‘Cherry’ has one canonical color value of red. However, for
terms with multiple canonical colors, we initiate the clustering start-
ing with the highest scored canonical color for each term. So, for the
term ‘Apple’ we start with the red value since it is scored higher than
that of green.

The centroid µi of each set is computed and constructs a new par-
tition by associating each point with its closest centroid. After this
association, the centroids are recalculated to form new clusters. We
apply a constraint to the algorithm such that if the size of each new set
is greater than 1, i.e. two or more colors are similar in value, we check
if the terms representing those colors have alternative canonical color
values. If so, the color is replaced by the next highest ranked canonical
color and the algorithm repeats these two steps until convergence, i.e.
when no data points switch clusters or visually discriminative single-
ton clusters are generated. For example, the canonical red colors of



‘Apple’ and ‘Cherry’ collide into one cluster, and for the next itera-
tion, the canonical green color for ‘Apple’ is considered instead of the
red to separate the singleton clusters apart, thus minimizing V from
Equation 5.
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Fig. 11. A comparison of Lin et al.’s algorithm and their expert’s selec-
tion with our algorithm’s color assignment without and with clustering.
With clustering, the red color value for ‘Apple’ is replaced with a more
discriminable green color. This clustered set of results can also be as-
signed to the closest set of colors from Tableau 10, as shown.

Figure 11 shows a comparison of Lin et al.’s algorithm and expert
selection with our algorithm’s color assignment without and with clus-
tering. Here, the red color value for ‘Apple’ is replaced with a more
discriminable green color. This clustered set of results is then assigned
to the closest set of colors from Tableau 10.

When the color palette is fixed, the k-means clustering algorithm is
more of a color quantization algorithm, which simply takes each color
value and finds the closest palette entry, minimizing the Euclidean dis-
tance.
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Fig. 12. Top row: A Tableau Public visualization [11] semantically color
encoded with our algorithm before clustering is applied. One can ob-
serve several brands colored with shades of red. Bottom row: Once
clustering is applied to the set of colors, some of the reds are replaced
by alternate canonical colors obtained from the corresponding logo im-
ages.

Figure 12 shows the semantic colors generated from each of the
company logos, with and without clustering. Notice that in the clus-
tered example, the colors assigned for ‘Red Bull’ and ‘PlayStation’
are lesser known colors gray and teal picked up from their respective
logo images as opposed to red and black. This is because the col-
ors red and black are already assigned to ‘Coca-Cola’ and ‘Converse
All-Star’, since they were the sole dominant colors in their logos.

6 DISCUSSION AND FUTURE WORK

For a set of data categories, our techniques can provide two useful
pieces of information - First, whether the terms have strong associa-
tions to color, and second, if there are such color associations, what
are the corresponding semantic colors. In addition, we can construct
palettes that contain distinctly different colors, either as defined in
CIELAB space or by mapping to a pre-defined palette. In some cases,
the results are adequate as returned. In others, there needs to be addi-
tional refinement.

Consider the example in Figure 13. This is another example
from Tableau Public with a custom set of colors created by the
creator of the workbook (original). Doing this in the current system
requires hand-editing each color with a conventional color picker.
We generated semantic coloring (based on the n-gram algorithm) and
applied clustering to get the second image (semantic). The colors are
similar, but not as distinct as those created by hand. Mapping to a
predefined palette (fixed palette), the colors become more distinct. but
we lose the lovely cream color mapped to ‘Vanilla’, replacing with
with light orange. There was no similar color in the palette. But either
of these automatically generated palettes are a good starting point
for further refining the colors, either by editing individual colors by
hand with a color picker, or by choosing an alternative or augmented
palette to use, then re-running the clustering.

We could improve our algorithm in a number of ways.

Perceptual constraints: There are known legibility constraints on
colors suitable for visualization, especially with respect to contrast.
We are interested in exploring modifying the returned set of colors to
match these constraints.

Palette recommendations: In our paper, our algorithm generates a
palette of colors from the ground up or assigns terms to an existing
palette based on color distance. While we use color discriminability
as one measure, other parameters are worth looking into for either
color reassignment or recommending a suitable palette. For example,
Likert terms may benefit from a red-green divergent ramp as opposed
to a traditional categorical palette for values with positive and negative
connotations.

Categorical terms may not have visually discriminable colors, such
as a set of metals that are all various shades of gray. Perhaps using a
categorical set of colors may not be an optimal design choice in such
cases. Also, logo colors for brands may not have one dominant color;
Take the FedEx logo with purple and orange hues or the Google logo
with multiple primary colors. In such cases, it may be worth exploring
alternative encodings such as multi-color glyphs. Researching ways
for using color co-occurrence information in visualization interfaces
for helping users with optimal encoding design choices such as logos
or glyphs, is yet another promising direction.

Exploring additional linguistic corpora and semantic trends: We
used Google n-grams as the corpus for determining term colorability
for single and multi-word terms. For terms that were not necessar-
ily colorable, such as product brands, we used symbolic synsets from
Wordnet. However, such domain specific terms may not be present in
the corpora we used. While a few abstract concepts such as ‘anger’
and ‘happy’ were identified with colors red and yellow respectively in
the Google n-grams corpus, the coverage for other such abstract terms
is limited.

Another Tableau Public example is a visualization showing the
timeline of when various Crayola colors were introduced [7]. While
our algorithm generates plausible color values for each term, they
are different from the user generated ones. The author of this work-
book used the actual Crayola color values, whereas our algorithm used
Google Image Search. While some of the Crayola colors such as
for ‘Bittersweet’ and ‘Sunglow’ were found through Google Image
Search, many of the colors are not true Crayola ones.

An extension of this method is to consider additional structured and
semi-structured data sources for increased domain-specific coverage
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Fig. 13. Top row: Tableau workbook author’s custom color assignment
to various ice cream flavors. Middle row: Color palette generated au-
tomatically by our algorithm. Bottom row: Color palette created from
a combination of colors from our algorithm and the Tableau 20 color
palette.

such as color name datasets like Crayola [3] and Pantone [9], and con-
cept knowledge bases such as DBpedia [4] and ConceptNet [2].

The PMI colorability score does not capture the entire spectrum
of meanings the word associates with. Books in the Google n-grams
dataset from distant past can contain diverse surface forms of the
same entities. For example, terms ‘cinnabar’ and ‘vermilion’ were
used interchangeably until around the 17th century, and then ‘ver-
milion’ became the more common name. By tracking the temporal
co-occurrence aspects of terms based on the life cycle of keywords,
the colorability score could be improved to better reflect semantic
trends in the corpus.

Extending semantic context to other categorical domains: In
Section 5.2, we showed how semantic context can be explored for
a set of categorical terms to retrieve color values. While companies,
brands and sports team are common categories, there are other
categories such as Likert terms that do not have a strong symbolic
connection. Alternative forms of color co-occurrence algorithms such
as sentiment analysis to determine color associations for Likert terms
and emotions could be an interesting research direction.

Visual consistency and harmony in color assignment: Our current
algorithm constrains the image search query by using dominant
colors as the main visual feature. The granularity of color could be
somewhat coarse, as the search confidence score is merely matching
the general hues. This could lead to certain colors being either too
dark or too light as seen in colors like ‘grape’ in Figure 11. An
extension of this method may include other visual features such as
saturation and lightness to make the set of colors more consistent
with one another. Color descriptors such as ‘light’, ‘pale’, ‘dark’,
‘deep’, and ‘milky’ associated with the terms could be used to create
these visual constraints. Also, evaluating color harmony algorithms
by assigning colors with equal or similar color saturation while
maintaining hue and value for example, could help improve the color
assignment algorithm [16, 15].

7 CONCLUSION

In this paper, we have shown two ways to leverage natural language
techniques to map category names to semantically appropriate colors.
The first uses n-gram analysis with respect to basic color names, the
second semantic context for the data category, to find identity colors
from visual symbols such as logos. Both return scores that can be
used to determine if a data term has a semantic coloring. We then
generate visually distinct palettes. In data visualization tools such as
Tableau [12], such an algorithm can complement the color picking and
palette selection features that already exist in those tools. By providing
semantically meaningful colors as a reasonable default, our algorithm
can guide such tools to match the terms to predefined palettes that are
designed to be visually discriminable and aesthetic for visual analy-
sis. A practical application for our algorithm would be to build it into
an online service to generate palettes for such tools. Alternatively, it
could be used to create a large dictionary of highly-colorable terms for
more efficient use.

Linguistic corpora provide rich resources for denoting various color
sensations and expressions for describing and understanding color.
Our results show that a natural language approach to harnessing pat-
terns of color co-occurrence with both text and images from large-
scale linguistic corpora such as Google n-grams and Google Images,
is a promising approach and can be improved in many ways. Our algo-
rithm does not have to explicitly contain a model for color as it obtains
much of the knowledge implicitly from the data, often reflecting how
humans have chosen to talk about color. As more data is available
online, and as computing capacity increases, we believe that a data-
driven methodology could be a promising approach to helping with
tasks in visualization beyond categorical color assignment.

As this verse by William Wordsworth in the poem titled ‘The
Thorn’ [44], available in digitalized form states [34] -

Ah me! what lovely tints are there
Of olive green and scarlet bright,
In spikes, in branches, and in stars,
Green, red, and pearly white!
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