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Fig. 1. Both plots show the same data set—the change in the length of a day (in microseconds) over 140 years—with different aspect
ratios. The segment redness corresponds to the error that viewers will make when comparing the slope of that segment to all other
slopes in the plot—as predicted by our empirical model. The aspect ratio on the right minimizes the total absolute predicted error.

Abstract—Comparing slopes is a fundamental graph reading task and the aspect ratio chosen for a plot influences how easy these
comparisons are to make. According to Banking to 45°, a classic design guideline first proposed and studied by Cleveland et al.,
aspect ratios that center slopes around 45° minimize errors in visual judgments of slope ratios. This paper revisits this earlier
work. Through exploratory pilot studies that expand Cleveland et al.’s experimental design, we develop an empirical model of slope
ratio estimation that fits more extreme slope ratio judgments and two common slope ratio estimation strategies. We then run two
experiments to validate our model. In the first, we show that our model fits more generally than the one proposed by Cleveland et al.
and we find that, in general, slope ratio errors are not minimized around 45°. In the second experiment, we explore a novel hypothesis
raised by our model: that visible baselines can substantially mitigate errors made in slope judgments. We conclude with an application
of our model to aspect ratio selection.

Index Terms—Banking to 45 degrees, slope perception, orientation resolution, aspect ratio selection.

1 INTRODUCTION

Banking to 45° is a classic design guideline in information vi-
sualization and statistical graphics due to Cleveland, McGill, and
McGill [5, 4, 3]. It recommends that the aspect ratio of a plot be cho-
sen such that the slopes of the plot’s line segments are centered around
45°. The guideline has been widely and successfully used by visual-
ization designers to manually select aspect ratios. And it has inspired
a variety of algorithms [5, 3, 10, 15] that automate this task.

Despite the practical success of this guideline, its perceptual under-
pinnings remain unclear. Cleveland et al. justified the guideline with
an experiment that showed that placing the mid-angle of two lines (the
angle halfway between them) at 45° minimizes errors made in judging
the ratio of their slopes. However, examination of their experimental
design suggests that this conclusion might not be generally applicable.
First, their experiment only tested moderate slope ratios and moderate
mid-angles. It’s unclear if their observed trends will hold for more ex-
treme slope comparisons. Second, they restricted how their subjects
made the slope ratio comparisons, instructing them to compare only
the heights (y-extents) of the line segments. Thus, their results may
not apply if other comparison methods are also used in practice.

This paper seeks to improve our understanding of slope ratio es-
timation in line plots through empirical modeling and experimenta-
tion. The paper is organized as follows. Section 2 provides details
on the original study and other background material. In Section 3 we
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describe our methodological approach. Section 4 describes our pilot
studies and Section 5 presents a new empirical model for slope ratio
judgments. Sections 6 and 7 describe two experimental studies of the
new model. The first study demonstrates that our new model fits ob-
served data well. Additionally this model provides strong evidence
that the minimum slope ratio estimation error does not occur at 45
degrees. The second study explores a novel hypothesis raised by the
new model—that slope ratio estimates are dramatically affected by the
presence or absence of a baseline. In Section 8 we briefly discuss the
implication of the new model for aspect ratio selection. We conclude
with a discussion of the limitations of our study and recommendations
for future work.

2 PREVIOUS WORK

This section described related work in three categories—perception,
aspect ratio selection algorithms, and line chart visualization design.

2.1 Perception

In the Cleveland et al. study [5], 16 subjects were each asked to esti-
mate the ratio (as a percentage) between the slopes of 44 pairs of lines
with equal x-extents by comparing the y-extents of the two lines. The
line pairs were chosen so that the true ratio percentage between their
slopes (pi j) varied between 50% and 100% and the slopes themselves
varied from about 0.1 to slightly more than 1. Subjects were shown
each pair of lines for only 2.5s encouraging quick estimates. The re-
sulting estimates, p̂i j, were then used to fit an empirical model of the
absolute estimation error [4]:

| p̂i j − pi j|= 4.39−0.47(pi j −100)−1.14ri j + εi j (1)

where pi j is the true percentage and ri j is the angle between the lines
in degrees. The model indicated that the absolute error was minimized
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when the lines were centered around 45°.
As far as we can tell, there is no other work in perception on slope

ratio estimation. However, there is substantial work on related percep-
tual estimation problems that might provide insight. Fisher [9] found
that people under and over estimated the orientation of a single 2D line
by as much as 3 degrees. The effect was largest for orientations near
45°. Kennedy et al. [13] showed that angle perception is biased by the
lengths of the angle’s legs. The effect was as large as 15 degrees for
extremely scalene angles. Recent work on 2D angle perception have
explained the traditional effect that small angles are overestimated and
big angles are underestimated as a result of a cognitive process that at-
tempts to perceive the angles in 3D instead of 2D. The distribution of
angles that occur in the real-world bias this cognitive process to under-
or overestimate 2D angles [14, 12]. The effect is up to 2 degrees and is
largest for angles near 20°. Fermüller and Malm proposed a unifying
image processing-based explanation for many types of illusions [7].

2.2 Aspect Ratio Algorithms

Banking to 45° has led to the design of automated algorithms for pick-
ing good aspect ratios. Since it is not clear how to extend the Cleve-
land et al. experimental results from plots with two line segments to
plots with many line segments, multiple algorithms have been recom-
mended. In the original paper, it was suggested that the aspect ratio
of plots should be chosen such that the median segment slope was 1,
an approach they called median absolute slope (MS). Cleveland later
suggested an alternative method, length-weighted average orientation
(AWO), that sets the length-weighted average of the absolute segment
orientations (the angle made with the horizontal) to 45° [3]. Later,
Heer and Agrawala [10] proposed the global orientation resolution
(GOR) method that selects the aspect ratio by maximizing the sum of
squares of the angles between all pairs of segments in the plot. A com-
putationally cheaper approach is to only consider the angles between
adjacent pairs of segments. Heer and Agrawala called this approach
the local orientation resolution (LOR). Recently, Talbot et al. [15] rec-
ommended an approach based on minimizing the arc length of the data
curve and demonstrated that this approach is more robust than previ-
ous work.

2.3 Line Chart Visualization

Beattie and Jones [1] examine business graphics in light of the slope
ratio hypothesis and conclude that viewer perception of business per-
formance is more accurate when graphs are banked to 45°. Best [2]
compare how extrapolation of visual trends varied across a number of
different chart types including line charts and find that the error de-
pended upon the trend’s functional form. Correll et al. [6] explore
how aggregate comparisons are made in line charts and suggest an
alternate visualization based on a color encoding to make these com-
parisons easier. Horizon plots [8, 11] permit compressing the vertical
axis of a line chart without changing the aspect ratio by overlaying
horizontal slices of the plot.

3 RESEARCH GOALS AND METHODS

Our objective is to better understand the theory behind aspect ratio
selection. To do this, we revisit the question raised in the original
Cleveland et al. study: how does slope ratio estimation accuracy de-
pend on the true slope ratio and on the aspect ratio of the line segments
(expressed as the mid-angle between the segments)? Our approach to
answering this question is twofold:

1. Based on insights gained from a series of pilot studies (Sec-
tion 4), we develop an empirical model of human slope ratio
judgments (Section 5).

2. Then, through two formal experiments, we demonstrate that the
model fits observed data well and we provide a perceptual inter-
pretation of its components (Sections 6 and 7).

In our model building process and in our experiments we follow the
high-level design of the original study. However, we modify the study
design to address two major limitations of their work.
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Fig. 2. Space of line comparisons parameterized by mid-angle and a
non-linear transformation of the true slope ratio. Line pairs used in this
study are plotted here. The spacing on the x-axis is not linear due to a
change in our preferred parameterization during post-experiment data
analysis. Line pairs used in Cleveland et al. are indicated with blue
points.

First, the original design only covers a small portion of the space
of slope pairs. In our work, we sample a much larger portion of the
space. The range of line pairs studied in our experiment is shown in
Figure 2 parameterized by the mid-angle, θm, the angle halfway be-
tween the line segments, and by the slope ratio (expressed as a per-
centage), pi j, between two segments i and j. (Due to a change in
parameterization part way through our analysis, our mid-angle sam-
ples are spaced slightly unevenly.) In comparison, the set of line pairs
studied in Cleveland et al., shown with blue points in Figure 2, spans a
much smaller range. To keep the sample count manageable, we sample
less frequently along the slope ratio-axis than Cleveland et al; however,
our pilot studies and Figure 6 in Cleveland and McGill [5] indicate that
the slope estimation error function changes slowly in this direction so
a lower sampling rate makes better use of limited subject time.

Second, in the Cleveland et al. design, subjects were explicitly in-
structed to make their slope estimates by comparing the heights (y-
extent) of both lines. This approach is exactly correct if the x-extent of
both lines is the same. However, we wonder if this is how most visu-
alization users would naturally approach the slope estimation task. To
explore how users make slope comparisons in practice, we omit this
instruction in our studies, instead allowing subjects to use their own
approach to the problem.

4 PILOT STUDIES

To help us better understand the slope ratio estimation task, we ran a
series of 11 pilot studies on Amazon Turk. We used these informal,
rapid studies to quickly iterate on our experimental design and to ex-
plore a variety of model possibilities.

For example, in early iterations we used a study design with 100
distinct slope comparison tasks (the product of 10 mid-angles and 10
slope ratios), but found that this resolution was unnecessary since the
shape of the response function was relatively smooth. In later itera-
tions, we settled on the design shown in Figure 2 with 49 (7×7) slope
comparisons, allowing us to run double the number of replications at
the same cost. We also found that linear sampling of the slope ratio
resulted in many line pairs that were visually indistinguishable. So we
modified our design to vary the true slope ratio nonlinearly making the
change in the visual angle between line segments equal.
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Fig. 3. Our model assumes that people do not make slope ratio judg-
ments directly. Rather they approximate the slope ratio using either the
ratio of the line heights or the ratio of the angles each line makes with
the horizontal. Both approximations can introduce error into the ratio
estimation. This error is captured by the first term in our model.

We paid 3¢ for each slope comparison or about 7 dollars an hour
if a participant took 15 seconds per estimate—somewhat on the slow
side. A total of 148 workers participated across all 11 studies, some of
whom participated in multiple studies, making up to 300 slope com-
parisons in total. Given the informal nature of these studies we chose
to make no effort to screen participants and accepted every non-empty
response. This meant that the quality of responses varied greatly, but
that we were able to finish studies often in a matter of minutes, making
iteration easy and effective. To compensate for the variance in qual-
ity, we ran multiple replications (3–10) of each comparison and used
the median in our analyses. Each replication was completed by a dif-
ferent subject or set of subjects (since Amazon Turk allows multiple
participants to collaborate on completing a replication).

5 A MODEL OF SLOPE RATIO COMPARISONS

Our iterative, exploratory use of pilot studies led us to make three as-
sumptions about slope ratio estimation that we want reflected in our
model.

First, slope ratios are not estimated directly, rather they are approx-
imated using simpler, more direct visual quantities, such as lengths
or angles. The approximation method used results in characteristic
approximation errors that our model should capture. While Cleve-
land et al. instructed their subjects to make an approximation based on
comparing the y-extents of the two lines (the left half of Figure 3), our
pilot study results showed that many participants were making errors
consistent with an approximation method based on comparing the an-
gles that the two segments made with the horizontal (the right half of
Figure 3). We denote these two approximation strategies HEIGHT and
ANGLE.

If the observer uses the HEIGHT approach, then they approximate
the slope of a line, tan(θi), with its y-extent, sin(θi) li, leading to the
slope ratio approximation:

pi j =
tan(θi)

tan(θ j)
×100 ≈

sin(θi) li

sin(θ j) l j
×100

This is a good approximation when the x-extents of the two lines are
similar.

If the observer uses the ANGLE approach they estimate the slope of
the line with the angle the line makes with the horizontal, θi, leading
to the approximation:

pi j =
tan(θi)

tan(θ j)
×100 ≈

θi

θ j
×100

This is a good approximation when tan(θ)≈ θ which is true for small
angles.

Second, we found that after accounting for the expected approxi-
mation error itself, there was an additional consistent source of error
that depended on the approximation method used. We hypothesize
that this error arises from perceptual sources, such as biases in visual
estimates of length or angle, or from higher level cognitive processes,
for example, rounding a response to the nearest multiple 5 or 10. We

A
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B

Fig. 4. Stimuli shown to subjects in Experiment 1 (left only) and 2 (both).
Not to scale. Experiment 2 evaluates the impact that adding a baseline,
making the comparison angle explicit, has on slope ratio estimation ac-
curacy. The vertical and horizontal displacement keeps the observer
from taking advantage of spatial alignment, which is known to aid many
types of perceptual judgment.

call this the judgment error. In the case of the HEIGHT approximation
method, the judgment error was roughly constant. For the ANGLE ap-
proximation, the judgment error appeared to be a linear function of the
mid-angle.

Third, our pilot studies suggested that the overall slope ratio esti-
mation process could be well modeled by a linear combination of the
approximation method and the judgment error.

Combining these three assumptions, we suggest a model for p̂i j, an
observer’s visual estimate of the slope ratio (expressed as a percentage)
between two line segments i and j:

p̂i j =







sin(θi) li
sin(θ j) l j

×100 +γ +εh
i j if HEIGHT

θi

θ j
×100 +(µ +βθm) +εa

i j if ANGLE
(2)

where θi and θ j are the angles the two lines make with the horizontal,
θm is their mid-angle, the angle halfway between them, and µ , β , and
γ are unknown parameters.

The model contains a two sub-models, one for each of approximat-
ing methods we observed in our pilot studies. The first term of each
sub-model corresponds to the approximation method. The second term
captures the judgment error and is constant for the HEIGHT sub-model
and linear in the mid-angle for the ANGLE model as suggested by our
pilot studies. The final term is a normally-distributed random variable
that captures all other sources of variation. Note that our model pre-
dicts the slope ratio, p̂i j , unlike the Cleveland model which predicts
the absolute error, | p̂i j − pi j|.

6 EXPERIMENT 1: MODEL ESTIMATION AND VALIDATION

The purpose of our first experiment was to gather an independent data
set to allow us to validate the form of our model and to estimate its
unknown parameters γ , µ , and β .

6.1 Method

We asked 8 naı̈ve subjects (4 female, 4 male, all Ph.D. students in
visualization or computer graphics) to estimate the slope ratio (as a
percentage) of the 49 line pairs shown in Figure 2. Subjects were
informed that the true percentage lay between 0% and 100%. Mim-
icking the original study, our display placed the line segments in the
upper-left and lower-right quadrants (Figure 4); this placement ensures
that the subject is unable to make direct x- or y-extent comparisons be-
tween the lines. As in the original experiment, all pairs of lines had the
same x-extent; the upper line, A, was always 200 pixels long and the
length of B was varied to maintain the same x-extent as A. Each sub-
ject performed the experiment on their own computer, so the absolute
size of the lines varied.

Subjects read a short set of instructions before beginning that
showed 3 example stimuli (large slope percentage, medium percent-
age, and small percentage) and gave the correct percentage for each.
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Fig. 5. The observed error (p̂i j − pi j) for Experiment 1 (black points and loess curve). The self-reported approximation strategies HEIGHT and
ANGLE result in very different errors. The error predicted by the approximation method is shown in red.

Then each subject was asked to evaluate each line pair 3 times for a
total of 7× 7× 3 = 147 comparisons. In each replication, the order
of presentation was randomized and each replication had a different
random order. In contrast to Cleveland et al., we did not attempt to
control the timing of the stimuli; we instructed the subjects to make
“quick visual estimates”, but each subject advanced at their own pace.

As in the pilot studies, we did not suggest any particular method
for making the slope ratio comparison. In particular, we ensured that
the instructions did not use the words “height” or “angle”, and we
did not inform the participants that the x-extents were matched within
line pairs. After each subject completed the study, we performed a
follow-up interview in which we asked them if they had used “any
specific strategy when making the slope comparisons” and then used
this self-reporting to categorize subjects by their dominant approxima-
tion method—ANGLE, HEIGHT, or other.

6.2 Results

We collected a total of 1,176 responses from the 8 subjects. Most
subjects finished the study in 10–20 minutes, indicating a per-task time
of 4–8 seconds, including both estimation and response entry time. In
comparison, Cleveland et al. showed each stimuli for 2.5 seconds after
which it disappeared and the user had an unspecified amount of time
to enter their response. We found no significant learning effect.

In the follow-up questioning, 5 subjects (4 female, 1 male) stated
that they had primarily made angle comparisons while 3 said that they
had primarily used height comparisons. Two of these subjects further
stated that they had also tried estimating slopes by zooming into the
plot and counting individual pixels. However, both reported quickly
abandoning this approach due to its time-consuming nature. Those
who reported making HEIGHT comparisons said it had been a con-
scious choice made after realizing that the x-extents were nearly equal
(only 1 out of the 3 HEIGHT subjects reported realizing that the x-
extents were exactly equal). In contrast, those who reported making
angle comparisons indicated that they did not make a conscious ap-

proximation choice. Rather, all 5 subjects did not realize until the
post-study interview that angle and slope estimates would produce dif-
ferent results.

We separated the responses from the self-reported HEIGHT and AN-
GLE groups for further analysis. The errors for the two groups are
plotted in Figure 5 along with a loess curve in black. As predicted
by our pilot studies, there are clearly observable differences resulting
from the choice of approximation method. The HEIGHT error function
is substantially lower and flatter than the ANGLE error which is higher,
particularly for larger mid-angles, and distinctly asymmetric. The ex-
pected errors due to the HEIGHT and ANGLE approximation methods
are shown in red. (Since we constrained the segments to have the same
x-extents in all stimuli, the HEIGHT approximation was exact and its
expected error is zero.) The expected error is a reasonable first-order
approximation to the observed error for both cases. However, there
is a substantial second-order error not explained by the approximation
approach used. This effect is captured by the judgment error terms in
our model.

As predicted by our pilot studies, for the HEIGHT subjects, there is
an additional roughly constant error. Fitting the HEIGHT sub-model to
this data gives an estimate for the parameter γ:

Parameter Estimate SE t-value

γ 7.45 0.59 12.73

This error is potentially consistent with participants rounding their re-
sponses up to the nearest multiple of ten. However, inconsistent with
our pilot study-derived model, in slope ratios 35%, 48%, and 65%
there is also an obvious downward trend as a function of mid-angle
that is not explained by our simple constant model.

For the ANGLE subjects, the approximation method explains some
of the error shape, but under-predicts the error for low mid-angles, and
somewhat overestimates the error for high mid-angles. To understand
the shape of this additional error, we plot the residual (the difference
between the observed error and the expected approximation error) as

4



Height Angle

0

50

10° 45° 80° 10° 45° 80°

Mid−angle (θm)

R
e
s
id

u
a
ls

 (
p
e
rc

e
n
ta

g
e
 p

o
in

ts
)

Fig. 6. Residuals of the observed responses in Experiment 1 after ac-
counting for the approximation term in our model, but not the judgment
error term. The overlaid loess fit provides evidence that, for the ANGLE

approximation approach, the judgment error can be approximated by a
linear function of the mid-angle.

a function of the mid-angle (Figure 6) along with a loess fit. There is
plausible evidence of a linear trend across the entire range with only
mild heteroscedasticity. As in our proposed model, it appears that a
linear function of θm is justified for the ANGLE judgment error term.
Thus, we fit a simple linear model with parameters µ and β :

Parameter Estimate SE t-value

µ 23.8 1.09 21.84
β -0.40 0.02 -18.62

Plots of the residuals from this linear model show a good match to a
normal distribution. We also tried fitting a linear model that included
the true slope ratio, pi j, as an additional predictor, but its coefficient es-
timate was not significantly different from zero and an F-test indicated
no significant difference between the two linear models, confirming
our decision to not include it the ANGLE model.

The overall ANGLE model, including both the approximation and
the perceptual error terms, has R2 = 0.690. Models fit with only one
of the two error terms had worse R2 and F-tests indicated that the dif-
ference was significant. We also tried fitting a model that included a
coefficient on the approximation term (the fit value was 0.94). R2 was
slightly improved (0.692), but not enough, in our opinion, to require
complicating the model.

6.3 Qualitative Evaluation of Fit

In Figure 7 we compare the absolute error derived from our model’s
slope ratio prediction (red), the absolute error directly predicted by the
Cleveland model (blue), and a loess curve fit to the observed absolute
error (black). Since the Cleveland model was not fit on our data we
expect it to fit worse; so we are more interested in whether it matches
the overall trend of the observed error.

Quality of the HEIGHT Submodel We first focus on the HEIGHT

approximation since this was explicitly tested in the Cleveland et al.
experiment. Their limited sampling space only included the left halves
of the 48%, 65%, and 87% plots (indicated with the thicker blue lines).
Note that in these halves, their model (blue) fits the shape of our data
pretty well; our subjects appear to have consistently higher error than
in the original study. However, when extrapolating the model beyond
their sample space the fit is quite poor. Where our data shows a con-
tinued downward trend as the mid-angle increases, their model goes
back up, creating a false minimum at 45°.

As we further extrapolate their model to the 11%, 17%, and 25%
panels, the fit is simply wrong. In these panels our data show a rela-
tively flat error, not the predicted U-shape. Part of the problem is that
the downward trend visible in the rightmost four plots, does not occur
in the left three. Thus, the Cleveland et al. model is fitting a local,
rather than global, trend.

In contrast, our simple constant sub-model does not fit any of the
plots particularly well, but the overall fit is better.

Quality of the ANGLE Submodel There are two high-level data
trends that are important in the ANGLE case. First, as the true slope
ratio decreases, the error function becomes increasingly asymmetric,
with very large errors for tall-narrow aspect ratios, and small errors
for short-wide aspect ratios. Second, this effect leads to a shift in the
minimum location from near 45° to below 30°. Our descriptive model
captures these trends quite well for most slope percentages. But our
model fails to fit the data at the very upper end of the slope percentage
(86.7%). The Cleveland et al. model was not designed to handle slope
estimation via angle approximation and does not capture the asymme-
try.

6.4 Discussion

This study has demonstrated that (1) people use both angle and height
approximations when making slope judgments and (2) that while the
Cleveland et al. model fit our data well in the regions considered in
the original study, it fails to extrapolate to either larger mid-angles or
smaller true slope percentages. Further, we have seen that slope ratio
estimation accuracy is not, in general, minimized at 45° .

Our model does not explain the downward trend in the right four
HEIGHT panels in Figure 7 that was observed both in our experiment
and in the original study. One speculative hypothesis that might ex-
plain this trend is that some HEIGHT subjects may switch to making
ANGLE approximations in this region of the slope comparison space,
perhaps without realizing it. The approximation error in this region is
low, so such a switch makes sense as a cognitive shortcut. But switch-
ing also adds the ANGLE judgment error, which is comparatively high
in this region.

Another notable failure of our model is in the ANGLE 87% panel.
The observed error is roughly flat across all mid-angles while our
model predicts increasing error. This may also indicate a place where
subjects switched approximation strategies. In this region of the slope
comparison space, the lines are nearly parallel. Perhaps subjects
switched from angle comparisons to judgments of parallelness with
an associated change in the approximation error.

More work is needed to understand these subtle effects.

7 EXPERIMENT 2: SOURCE OF ANGLE’S JUDGMENT ERROR

TERM

The judgment error term in our model represents the perceptual or
cognitive error introduced in the process of making a slope ratio esti-
mate. Our exploratory studies and the first experiment allowed us to
empirically fit a linear form to the this term in the ANGLE sub-model.
However, the source of this error remains unclear. Experiment 1 indi-
cated that the linear trend being fit by the second term appears only in
the ANGLE data, not the HEIGHT data (c.f. Figure 6). Thus, whatever
is causing the trend is likely due to the angle estimation process itself.

There has been a large amount of previous work on angle estimation
in the perception literature. We attempted to find previously described
effects that could explain the error we are seeing. However, the effects
we found were either too small in magnitude (we have to explain a
20% deviation from the predicted value—implying an angular misper-
ception of 2-4°) or went in the wrong direction.

But in comparing the stimulus of Experiment 1 to experiments in
the angle discrimination literature one property stands out. Our stimu-
lus in Experiment 1 shows only one of the angle’s legs. The other leg
(the horizontal base) must be imagined by the subject. We hypothe-
sized that the source of the linear trend in the second term of ANGLE

is a misperception of the angle ratio caused by the lack of a visible
baseline.
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Fig. 7. Comparison of our fit model (red), the Cleveland model [4] (blue), and a loess curve fit to the observed absolute error (black). Our model fits
the prominent trends in the ANGLE case well, but the simple constant function in the HEIGHT case does not fit the downward trends in the right four
plots. In the region of the slope comparison space studied in Cleveland et al. (shown in thick blue line), their model matches our data relatively well.
However, it’s shape fails to adequately match the trends seen in the rest of the data. In particular, the assumption that the error will be minimized
at a mid-angle of 45°is not generally true.

This second experiment tests this hypothesis by comparing the
judgment error made by subjects shown a baseline with the error of
those who are not shown a baseline. If our hypothesis is correct, the
linear trend in the judgment error should be largely eliminated by the
presence of a baseline.

7.1 Method

We asked 20 naı̈ve subjects (18 males, 2 females, 19 are Ph.D. stu-
dents, post-docs, or staff members of a university computer science
department, 1 is a Physics Ph.D.) to perform the same task as in Ex-
periment 1, except half were randomly assigned to see line segments
without baselines and half to see line segments with baselines (see Fig-
ure 4). Additionally, rather than ask participants to make 3 judgments
of the same stimulus, as in Experiment 1, we further subdivided the
mid-angle axis of the sample space by a factor of 3 in order to get
finer-grained estimates of the shape of the error function. Thus each
participant still made a total of 21×7 = 147 comparisons.

Other than these two changes, the experimental set up followed Ex-
periment 1. Again we did not mention the slope estimation strategies
to subjects, but in a follow up interview identified whether they were
principally making height or angle comparisons.

7.2 Results

We collected a total of 2,940 responses from the 20 subjects. Of the
10 subjects in the baseline condition, 2 subjects reported using height
approximation and examination of their response patterns confirmed
this. Of the 10 subjects in the without-baseline condition, 2 subjects
also reported using height approximation, but examination of their re-
sponse patterns suggested that only one of them had actually done so.
We attributed this to miscommunication between the subject and the
interviewer and included their response with the angle data. Addition-

ally, one subject reported using the angle method, but was aware that
they were going to overestimate large angles, so mentally applied a
correction to their responses. Examination of their responses revealed
a pattern completely distinct from either the ANGLE or HEIGHT pre-
dictions. The subject had extremely low error for high mid-angle com-
parisons, but extremely high error for low mid-angle comparisons. We
held this subject’s data out from the current analysis. We found no
learning effect.

The response patterns of those who used the height approximation
were similar to those seen in Experiment 1. But given the small num-
ber of responses, we didn’t further analyze this case.

Figure 8 shows the observed errors for the ANGLE subjects in the
without and with-baseline cases. The addition of a baseline dramati-
cally improves the error behavior in the low mid-angle regions of the
leftmost 5 plots. After subtracting out the approximation term of our
model, we again plotted the remaining error as a function of mid-angle
(Figure 9). The without-baseline plot is a plausible match to the linear
trend found and modeled in Experiment 1 (c.f. left half of Figure 6).
However, the baseline case is substantially different. As predicted, the
addition of a baseline nearly eliminates the judgment error for mid-
angles less than 45°. The error here is now nearly as small as in the
height approximation results from Experiment 1. But, unpredicted, the
linear trend was not eliminated for mid-angles larger than 45°. Here
the trend continues downward as it did before.

7.3 Discussion

Our hypothesis is not fully confirmed. The ANGLE judgment error was
mitigated in part of the domain but was not completely eliminated by
the addition of a baseline. However, this result does provide evidence
that the judgment error arises at least in part due to errors made in the
angle ratio estimation portion of slope estimation.
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Fig. 8. Comparison of observed error in the ANGLE group without and with a visible baseline. The addition of a baseline dramatically decreases
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Fig. 9. Plot of the ANGLE judgment error in Experiment 2 as a function
of mid-angle. The presence of a baseline partially mitigates the error for
mid-angles less than 45°, but has no impact on mid-angles larger than
45°.

It’s unclear what causes the error for larger mid-angles. One possi-
ble hypothesis is that for large slopes observers actually estimate the
angle it makes with the vertical, rather than with the horizontal. If
this is true, the addition of a vertical baseline could make the error
completely disappear. Alternatively, this error appears to arise primar-
ily for steeper angles where our choice to keep x-widths the same led
to comparisons between very long and very short lines. Perhaps this
length difference, or simply small absolute lengths, leads to this ob-
served error.

8 APPLICATION TO ASPECT RATIO SELECTION

The frequent use of the angle approximation for slope comparisons
in our study suggests that most people will make large errors when
comparing two lines with large slope, suggesting that flatter aspect
ratios should be preferred. This, in retrospect, seems obvious, but has
not been included in automatic aspect ratio selection algorithms.

To verify this, we use the model proposed in Section 5 with the co-
efficients fit in Experiment 1 to estimate optimal aspect ratios for a set
of time series analyzed previously in Talbot el al. [15]. We selected
the aspect ratios by minimizing the sum of the predicted error under
the ANGLE submodel over all pairs of line segments in each plot. The
results are shown in Figure 10. As expected, compared to previously
proposed aspect ratio selection algorithms, our empirical model con-
sistently selects flatter, wider aspect ratios.

Our work predicts that the aspect ratios chosen by previous meth-
ods will result in higher slope ratio estimation errors; but slope ratio
estimation is just one graph reading task among many. For example,
we also want visualization users to have low error when making es-
timates of the function itself (locations of maximums and minimums,
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sign changes, etc.) and of the second derivative (changing rates of
growth or inflection points). Any specific aspect ratio necessarily has
to make a tradeoff between reducing errors for some tasks and increas-
ing it for others. It’s likely that these previous automated techniques
are trading off slope ratio estimation accuracy for better accuracy on
something else. Our descriptive model of slope ratio estimation is
a first step towards understanding the full set of error functions that
should be considered when automatically selecting an aspect ratio.

We have not yet incorporated our baseline results into an automatic
aspect ratio selection mechanism. For a plot with gridlines or for a data
curve that is close to, or crosses, the x-axis, the baseline results suggest
that an aspect ratio selection algorithm could have more flexibility in
selecting flatter aspect ratios than otherwise might be possible, because
the visible reference line will reduce slope ratio estimation errors.

9 DISCUSSION AND FUTURE WORK

The high-level conclusion we draw from this work is that the theory of
aspect ratio selection is not as simple as it once seemed. Minimizing
the error in slope ratio estimation does not directly lead to a simple
design guideline. Substantial future work remains to flesh out a full
theory of aspect ratio selection. In previous sections, we called out
patterns observed in our data that were not captured by our model.

Teasing apart the low-level details here will require careful experi-
mental work. Further, we did not gather data from the extremes of the
comparison space. Having more data from the extremes might pro-
vide further insight into the source of the remaining unexplained error.
Additionally, the fact that we had few subjects choose to use height
comparisons means that we did not gather enough data to further ana-
lyze the interesting trends that we saw there.

A major limitation shared by Cleveland et al.’s original study and
our study is that both only look at slope comparisons between pairs of
lines in isolation. But this is not how graph reading is done; graphs
typically consist of many line segments, and frequently graphs have
enough line segments that the data curve looks continuous. It is still
unclear if the results derived in our studies for pairwise discrete com-
parisons will transfer to real plots. Additionally, our finding that an-
gle ratio comparisons are more common than height comparisons also
needs to be verified using real plots and real plot-reading tasks.

We have presented and validated a new model for slope ratio com-
parisons. We’ve also shown that the model can generate interesting
hypotheses for further exploration and can inform existing aspect ratio
selection practice. But there remains substantial work to be done to
build a solid understanding of aspect ratio selection.
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