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Abstract—It remains challenging for information visualization novices to rapidly construct visualizations during exploratory data 

analysis. We conducted an exploratory laboratory study in which information visualization novices explored fictitious sales data by 

communicating visualization specifications to a human mediator, who rapidly constructed the visualizations using commercial 

visualization software. We found that three activities were central to the iterative visualization construction process: data attribute 

selection, visual template selection, and visual mapping specification. The major barriers faced by the participants were translating 

questions into data attributes, designing visual mappings, and interpreting the visualizations. Partial specification was common, and 

the participants used simple heuristics and preferred visualizations they were already familiar with, such as bar, line and pie charts. 

From our observations, we derived abstract models that describe barriers in the data exploration process and uncovered how 

information visualization novices think about visualization specifications. Our findings support the need for tools that suggest 

potential visualizations and support iterative refinement, that provide explanations and help with learning, and that are tightly 

integrated into tool support for the overall visual analytics process.  

Index Terms—Empirical study, visualization, visualization construction, visual analytics, visual mapping, novices.

 

1 INTRODUCTION 

Information visualization (InfoVis) is becoming a mainstream 
technology that is being utilized by InfoVis novices – those who are 
not familiar with information visualization and visual data analysis. 
Sites such as Many Eyes [37] enable anyone to upload and visualize 
data, and systems that fall under the umbrella of casual InfoVis 
provide visualizations in everyday life [30]. Despite this progress, 
the vision of InfoVis for and by the masses has not yet been realized 
[14, 17]. Part of the reason for this is that constructing perceptually 
effective visualizations, and even interpreting moderately complex 
ones, remains challenging for InfoVis novices. 

Interacting with visualizations has become easier with recent tools 
such as Many Eyes, Tableau etc. However, many potential users that 
could benefit from these tools lack visualization construction 
expertise.  In particular, it has been noted that users have difficulties 
deciding how to map data elements to graphic attributes [14]. This is 
especially problematic because selecting inappropriate visual 
mappings can impede analysis and even result in misleading 
conclusions. It is therefore important to provide tool support that 
enables InfoVis novices to design good visual mappings easily [14]. 
To create such tool support, we need to understand how InfoVis 
novices think about and express visual mappings, which barriers they 
encounter, and how this impacts the sensemaking process. Once the 
specific characteristics of visual mapping expression are uncovered, 
we can build tools that specifically support this process, for example 
by reducing discovered barriers. Such tools could potentially enable 
a larger audience to leverage visual data exploration and analysis for 
decision-making and insight generation, both in work and in daily 
life. 

While general models of the visualization process have been 
proposed (e.g. [3, 5, 35, 38]), it remains unclear how these models 
apply to visualization construction by InfoVis novices, and exactly 
how a lack of visualization expertise impacts sensemaking. To 
explore this in detail, we designed an exploratory laboratory study 
that investigated which processes novices typically follow during 

visualization construction, which common patterns appear, and 
which barriers and problems InfoVis novices encounter. 

Our work makes three primary contributions: first, we empirically 
examine how information visualization novices construct 
visualizations; second, we derive abstract models describing barriers 
in the data exploration process and how information visualization 
novices think about visualization specifications, and finally, we 
provide implications for tool design based on our findings and 
models. 

2 RELATED WORK 

There are several models of information visualization processes that 
describe the different steps users follow in configuring and using 
visualizations to gain insights. Card et al.’s reference model for 
visualization ([3], see Fig.1) describes how visualizations are 
created in four steps and how the user interprets and interacts with 
visualizations. First, raw data are processed and transformed into 
data tables (data transformations). Data tables can be further 
transformed, for example by filtering, adding calculations, and 
merging tables. The resulting data tables are then mapped to visual 
structures (visual mappings), which are generic visual representation 
mechanisms such as line charts or maps with their corresponding 
visual properties. After the data tables are mapped to visual 
structures, views of the visual structures can be rendered and 
displayed to the user. Different views show different parts of the 
visual structures at varying levels of abstraction from different 
perspectives. View transformations are operations that change those 
views, e.g. zooming on a map can change the visible part of the map 
and the level of detail, but does not change the visual structure. The 
user interprets the views with a task in mind, and can interact with 
the visualization by changing data transformations, visual mappings 
and the current view.  

Chi’s Data State Model [6] extends and formalizes Card’s 
reference model by allowing for multiple pipelines, and by having 
nodes represent state and directed edges represent single 
transformations operations. Chi also analyzed different visualization 
techniques and showed how they fit into the Data State Model [5]. 
Spence [35] identified selection, encoding, and presentation as the 
main steps in the transformation from raw data to visualization. Ware 
[38] devised a model of the visualization process that explicitly takes 
data gathering into account, but does not distinguish between data 
tables, visual structures, and views. Ware’s model contains four 
stages: collection and storage of data, data pre-processing, 
construction of image, and the human perceptual and cognitive 
system. 
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Several aspects of these visualization models, such as view 
interaction (e.g. [19, 34, 40]), individual analytical processes (e.g. 
[1, 12, 29]), and team level analytics (e.g. [16, 32]), have been 
explored in depth, but an understanding of how users construct visual 
mappings remains limited. Several case studies present how 
visualizations are created from a designer’s point of view [31] or as a 
close interaction between designers and users [39]. These studies 
found that an iterative process of prototyping visualizations is 
essential: detours are often unavoidable and can provide valuable 
knowledge. While these studies provide insights into the 
visualization construction process, they assume experts create the 
visualizations for users, whereas our study focused on how InfoVis 
novices create visualizations for their own use.  This shifts the focus 
from facilitating communication and iterative domain understanding 
to bridging gaps caused by a lack of visualization expertise. Heer et 
al. [14] devised some guidelines on how to support novice users: 
facilitate user-friendly data input, provide automatic selection of 
visualization type using sensible defaults, and provide contextual 
information that explains which data are displayed and which 
encodings are used. Our study corroborates these guidelines with 
empirical evidence and provides suggestions for additional tool 
support features.  

In summary, we offer several contributions beyond existing work. 
We build a model of how InfoVis novices think about visualization 
specifications and how they construct visualizations. We also 
provide design guidelines for tool support to help novices create 
visualizations.  We note that our model and design guidelines are 
based on empirical evidence. 

3 METHODOLOGY 

In this section, we discuss our study design, its limitations and the 
design choices we made. Our research goal was to explore how 
InfoVis novices construct visualizations, and specifically to 
understand the processes used in mapping data elements to 
visualization attributes. We define InfoVis novices as those who are 
not familiar with information visualization and visual data analysis 
beyond the charts and graphics encountered in everyday life. InfoVis 
novices can be domain experts in their area of expertise (subject 
matter experts) and the data they are analyzing can be from this area. 
Our research question is: 

How do InfoVis novices construct visualizations during visual 
data exploration? 

We conducted an exploratory observational study in a laboratory 
setting with a human mediator who used the visualization 
construction software on behalf of the participants. Because InfoVis 
novices are typically not exposed to advanced visualization tools and 
are unlikely to perform many in-depth visual analytics tasks, field 
studies and survey research were not viable strategies. We chose to 
let participants construct and analyze real visualizations, because we 
believe that actually seeing the underlying data rendered in the 
specified visualizations provides essential feedback for designing 
visual mappings. Creating and refining visualization through a 
mediator was less dynamic than direct interaction with visualization 
tools, and this might have impacted the observed process. While we 
believe that such direct interaction would be more iterative and 

dynamic, we argue that elements of the process will be the same, and 
that by introducing communication with a mediator, we achieved 
deeper insight into how users think about visualizations, similar to a 
think-aloud protocol. 

3.1 Pilot Studies 

The study design was shaped in a series of five pilot studies with 
four participants – the same person participated in the first two 
pilots. In the first pilot, the participant directly used Tableau Desktop 
4.1. It turned out that the user interface and instructions influenced 
the participants’ behaviour, and we could not determine whether 
problems occurred because of the interface or lack of understanding 
of how to create visual mappings.  After the first pilot, we switched 
to an approach where the participants told a human mediator how 
they wanted the data to be visualized, and the mediator in turn 
created the visualizations for the participants. In contrast to Wizard-
of-Oz approaches, participants were aware that the visualizations 
were created by a human mediator, and the goal was not to simulate 
a system, but to shield participants from the tool interface. By hiding 
the interface, we aimed to reduce tool and instruction bias while 
preserving the iterative loop of constructing, seeing and refining 
visualizations. In the last three pilots and in the study, the mediator 
was in a different room and used predefined messages to 
communicate with the participant to further reduce the influence on 
the participants’ behaviour. 

Similar to the influence of the software interface, we found in the 
first two pilots that the task questions strongly influenced the 
visualization construction process and which visualizations were 
constructed, and participants focused too much on understanding the 
specific questions. To remove the influence of the questions, we 
switched to an open data exploration task after the first two pilots. 
We improved the setup further in the last three pilots by adding a 
board with visualization samples, improving and standardizing how 
the human mediator responded, and refining the predefined messages 
as well as the task instructions. 

3.2 Participants 

Nine 3rd and 4th year business students participated in the study (see 
Table 1 for details). To recruit participants, we announced our study 
in four business classes, posted to two business student mailing lists 
and put up flyers on bulletin boards across campus. Although the 
number of participants may seem low, we believe it is appropriate 
for our exploratory research approach, because our findings were 
saturated in the 150 visualization construction cycles (see Section 
3.7) that were our unit of analysis. 

The participants were between 20 and 24 years old with a median 
age of 21. The participants had been using computers between 8 and 
18 years (median 11). All participants used computers for at least 1 
hour per day, and often more. The frequency of how often 
participants performed data analysis varied from daily to never. 7 out 
of 9 participants reported that they were familiar with statistics, but 
only 3 used statistics regularly. All participants were familiar with 
graphs and charts. 

We chose participants with no specific experience in visualization 
and with backgrounds that supported the understanding of basic 

Participant ID 1 2 3 4 5 6 7 8 9 

Age 22 22 21 23 20 21 24 20 21 

Gender M F F F F F M F F 

DA D D W M M N W N W 

# VCCs 13 11 18 18 22 13 29 18 8 

Table 1. Participants.  

Data Analysis (DA) performed Daily (D), Weekly (W), Monthly (M), 

Never (N). #VCCS indicates number of visualization construction 

cycles created by participant (see Section 3.7). 

Fig.1. Visualization Reference Model by Card et al. [3]. The aspects 

that were investigated in this study are emphasized. 



business data, because our data set contained sales data. We 
recognize that selecting business students limits the generalizability 
of our results.  Nevertheless, we believe that our results are similar to 
other groups of InfoVis novices, because the impact of the data set 
and domain on the visual mapping process itself is limited. Also, 
while we did not observe significant inter-participant variations on 
the level of visualization construction cycles (see Section 3.7), it is 
possible that individual differences such as cognitive style [20] 
influenced the visualization construction behaviour, as variations 
have been observed by Kang et al. [18] for the sensemaking process. 

3.3 Procedure 

For each participant, there was a separate study session that lasted 
about 1 hour and 45 minutes. It started with a computer-based 
background survey. Next, the materials for the observation phase, i.e. 
the sample visualizations, the task instructions, the visualization 
cheat sheet, and the data attributes were explained. The participant 
was invited to ask questions, and was given a 5 minute training 
phase to become familiar with the procedure. The goal of the training 
phase was to reduce the influence of learning. We still observed 
minor learning effects in some sessions, but those were usually 
limited to the first few minutes and participants were able to 
construct visualizations during that time. After the training phase, we 
observed how the participant created and analyzed visualizations for 
45 minutes. Participants were encouraged to verbalize their thoughts. 
The study session concluded with a follow-up interview, in which we 
asked the participant about any encountered problems and the 
created visualizations. The interview was also used to clarify any 
other observations made during the observation phase. 

3.4 Setting and Apparatus 

Participants were seated in a usability lab throughout the procedure. 
The two operators were in a control room linked by video and audio, 
except while the initial instructions were being given. The 
participants’ workspace (see Figure 2) consisted of a 19’’ LCD 
monitor that was used to display the constructed visualizations, a 
board with 16 example visualizations, a notepad and three colored 
pens. The participants were observed using cameras and a 
microphone. Three cameras recorded the workspace and the 
participant’s actions from an above, a back-left and a back-right 
viewpoint. The participants’ screen was also recorded.  

Operator 1 (mediator) observed the participant on three monitors, 
and had a dual monitor workstation on which he created the 
requested visualizations using Tableau 4.1. One monitor output was 
duplicated to the participant’s screen. In response to a visualization 
request, the mediator moved the visualization window to his private 
screen, created or adjusted the visualization, switched to presentation 
mode and moved the window to the duplicated screen. By switching 

to Tableau’s presentation mode, the controls and data attributes were 
hidden. We chose Tableau Desktop 4.1 as the visualization software, 
because it allowed us to rapidly create and modify a diverse set of 
visualizations on behalf of the participants. One limitation of our 
study is that the range of visualizations which could be created with 
Tableau 4.1 and the defaults provided by the tool still influenced the 
created visualizations and the mediator responses to some degree. 
However, a further reduction of tool influence was not possible, 
because we needed a software tool to allow for rapid iterative visual 
data exploration within a study session. Also, separating mediator 
and participants in different rooms might have led to increased 
miscommunication, and waiting for visualizations to appear might 
have influenced the participants to switch to different questions 
before finishing their current analysis. However, we considered 
reducing the mediator influence more important than retaining 
realistic communication, because it increases the reproducibility of 
the study.  

In addition to creating visualizations, the mediator was also able to 
display text messages to the participant. Whenever the participants 
asked for clarification, a visualization could not be created or 
requested data was not available, the mediator responded to the 
participant using text messages. Predefined responses were used 
whenever possible. The audio channel from mediator to participant 
was only used if text messages did not suffice, which happened 
rarely. Operator 2 controlled the recording and took notes to inform 
the follow-up interview.  

3.5 Task and Materials 

The participants were asked to explore a fictitious sales data set and 
look for interesting insights. They were told to imagine that they 
were new employees in a company, and their supervisor had asked 
them to analyze the sales data of the last 4 years and report their 
insights. The instruction to look for insights was solely intended to 
guide the participants. We did not analyze their insights, and not all 
participants reported their insights in a think-aloud manner. 

We used the superstore sales example data set from Tableau 4.1. It 
contains about 8,400 sales records with 28 different attributes. This 
data was chosen based on two important characteristics: it contained 
enough attributes to support interesting exploration tasks for 45 
minutes, the length of our study, and participants were unlikely to be 
familiar with the data and make preconceived assumptions about it. 

Participants received a task sheet containing the available data 
attributes, the visual properties that could be mapped (color, shape, 
size, label, position, animation), the possible operations (filtering, 

Fig.2. Participants’ Workspace Fig.3. Board with 16 Sample Visualizations. The board showed 5 

variations of bar charts (D, E, I, N, O), 4 variations of scatter plots (A, 

B, H, P – A & B only use 1 dimension for numerical values), 3 

variations of line charts (C, F, G – the line in F was not chronological), 

a pie chart (M), a histogram (J), a map (L), and horizontal lines with 

changing width and color (K). 



sorting, grouping, calculations, visualization history), and the task 
description including a short scenario. The participants also had a 
notebook for sketches and notes, and a board of 16 example 
visualizations labelled by letters (see Figure 3). We chose to provide 
sample visualizations, because we noticed in the pilots that 
participants tended to use only the visualizations they are most 
familiar with. We selected a broad range of different visualizations 
that are possible in Tableau 4.1 by choosing from the Tableau 
visualization samples web page and adding three standard 
visualizations (samples D, E, M). We aimed at covering as many 
visual elements and visualization types as possible in visualization 
samples of similar visual complexity. The visualizations were put on 
a board so they were all visible. We intentionally put more common 
visualizations (bar, line, and pie charts) on the less prominent parts 
of the board (left, bottom, and top), hoping that participants would 
give greater consideration to visualizations that are presumably less 
familiar. 

3.6 Follow-up Interview 

The goal of the follow-up interview was to elicit more information 
about the designed visual mappings and the experienced difficulties. 
We followed an interview guide that contained questions about those 
topics. The interview was audio-recorded. Operator 2 selected a 
diverse set of about five different visualizations that the participant 
created during the observation session, and asked about the reasons 
for choosing those visualizations. We showed the corresponding 
video passages and visualizations, if necessary. We also asked about 
the encountered difficulties and what might have helped to resolve 
them. At the beginning of the interview, the participants rated their 
understanding of the data set and their preference for familiar 
visualizations on a 5 point Likert scale. We also asked them about 
the reasons for preferring or not preferring familiar visualizations. 

3.7 Data Analysis 

We analyzed the video and interview material using the qualitative 
data analysis approach outlined by Creswell [7]. The transcribed 
material was coded in several passes during which the codes were 
developed, refined and consolidated. Themes that emerged from the 
codes were compared to the interview data and the raw video 
material to check their validity and to provide richer descriptions of 
the themes. We also analyzed the code occurrences to gain insights 
into the distributions and likelihoods of the underlying events. 

We used visualization construction cycles as units of analysis. We 
define visualization construction cycles (VCCs) as instances during 
which the participants created and refined a visualization. They 
ended when the final visualization was displayed. New VCCs started 
when the participants changed their analysis questions, switched to 
different data or started creating a new visualization. Minor 
refinements were not considered to be new VCCs. We observed 150 
visualization construction cycles, ranging between 8 and 29 per 
participant, with a median of 18 (see Table 1). The VCCs are not 
statistically independent samples, because each participant created 
several VCCs. However, on the level of VCCs, the observations 
reported here were evident across all participants, and we did not 
observe that inter-participant differences had a big influence. 

To prepare the data for analysis, we transcribed the entire 
interview and most of the video material. The only parts of the video 
that we did not transcribe completely were the participants’ 
interpretations of the visualizations; we only transcribed passages 
that led to changes of the visualization, led to switching the analysis 
goal, or exposed difficulties interpreting the visualization. The video 
transcription also included gazes, gestures and sketching.  

Our analysis was an iterative process with three to five passes by a 
single coder (the first author) in which the coder developed, refined 
and consolidated codes. First, codes were attached to transcribed 
passages. These codes described what was immediately apparent 
from the data, e.g. ‘[reference to] sample visualization’, ‘time span’ 
or ‘[reference to] visual property’. Next, the coder grouped codes 

and their context into themes, e.g. ‘data attribute selection’. When 
grouping codes into higher-level codes and themes, the relationship 
between the codes was taken into account, e.g. words linking codes 
together as in ‘[…] consumers down the y-axis […]’. In this 
example, ‘consumers’ was coded as ‘data attribute’ and ‘y-axis’ was 
coded as ‘visual property’. Taking the linking word ‘down’ into 
account, the passage was coded as ‘visual mapping’. 

For each VCC, we identified how it was entered, between which 
main activities (themes identified in exploratory coding) transitions 
happened, and where difficulties occurred. The findings across all 
VCCs were then summarized and are presented in Section 4. 
Interview material was used to support and explain themes that 
emerged during coding. Background survey data was evaluated in 
the context of particular observations, e.g. the preference of familiar 
visualizations. 

4 F INDINGS 

We found that there were three main activities in the iterative 
visualization construction process: data attribute selection, visual 
template selection, and visual mapping specification (4.1). The major 
barriers were translating questions into data attributes, designing 
visual mappings that support answering these questions, and 
interpreting the visualizations (4.2). The participants often omitted 
parts of the visualization specification (4.3), and used simple 
heuristics or preferred visualizations they were already familiar with, 
such as bar, line and pie charts (4.4). 

4.1 Visualization Construction Process  

In the visualization construction cycles (VCCs), the participants 
started by creating a visualization specification, and after the system 
visualized the data according to that specification, the participants 
interpreted the visualization and refined the specification. The 
visualization specification consisted of data tables, visual structures 
(i.e. visualization types and their properties) and visual mappings 
(i.e. connections between attributes and visual properties) that are 
similar to those from the visualization reference model by Card et al. 

Fig.4. Consolidated Transitions and Activities in VCCs. The numbers 

and sizes indicate how often an activity or transition between activities 

occurred. The numbers in brackets show how often a VCC ended 

after an activity. All numbers are aggregated over all VCCs. Arrows 

originating in “system displays visualization” indicate refinements 

performed by the participants. Arrows originating in the VCC box at 

the top indicate how VCCs were started.  



[3]. The participants used different modes of expression, i.e. 
gestures, verbal statements, and sketches, to communicate the 
visualization specification. The gestures included pointing at 
sketches, samples, and the current visualization, as well as drawing 
shapes in the air, e.g. circles for pie chart or waves for lines. The 
modes of expression were used separately and combined. We 
observed three different specification activities (data attribute 
selection, visualization template selection and visual mapping 
specification). Together these three specification activities indicated 
which visualization should be created. Figure 4 summarizes the steps 
taken by the participant to construct visualizations. 

The participants started either by selecting data attributes (74 
times), by choosing a visualization template (64 times overall, 30 
times referring to the current visualization as part of the analysis 
flow) or by specifying visual mappings (12 times), e.g. by starting to 
draw a sketch. We were able to identify a concrete hypothesis or 
question in 29% of the VCCs. For example, one participant asked at 
the beginning of a visualization construction cycle “What are our 
best sellers? What do we make the most money on?”  

The participants then moved to different specification activities or 
waited for the visualization to be displayed. There was no common 
temporal order in which these activities happened. Instead, the 
participants seemed to switch between data attribute selection and 
visual mapping specification. The visual template was selected at 
different points during that process, but typically only once per 
visualization construction. Participants specified at least the data 
attributes that should be used, either directly or as part of the visual 
mapping specification or the visualization template. Waiting and 
looking at the screen indicated that they expected the visualization to 
appear, and was observed after all three activities. Because the 
participants often omitted information (see 4.3), the different 
elements of the visualization specification are not necessarily 
complete and connected. For example, operations that need to be 
applied to data attributes might be missing, or the visual mappings 
might be incomplete. 

During data attribute selection, participants expressed which 
data attributes and relationships they wanted to see in the 
visualization without mapping them to any visual property, for 
example: “Can I see the sales per state?” This specification often also 
included expressing the expected level of abstraction, filtering, 
sorting, and operations that should be applied. For example, one 
participant asked for filtering to concrete categories this way: “Can I 
see the furniture data for Washington State divided by the customer 
segment in terms of sales […]?” Another participant expressed the 
level of abstraction for a data property and the application of the 
totals operations like this: “Can I see the regional sales for each year 
for the past 4 years and then the total?” Sometimes, the participants 
also expressed the cognitive operation they planned to apply, e.g. 
“[…] to compare that time to order priority”. Data attribute selection 
covers only the data attributes that are selected without referring to 
visual properties. The participants could also implicitly add data 
attributes to the visualization by including them in visual mapping 
specification or visual template selection activities. We did not 
include such references to data attributes in the data attribute 
selection activity. 

For visualization template selection, participants decided how 
they wanted to visualize the data by picking a template. Visualization 
templates are structures that specify the visualization composition 
and potentially visual mappings and concrete data attributes. We 
noted during our analysis that templates could be categorized within 
three classes: visualization types remembered by the participants, 
e.g. “Can I see this as a bar chart” (49 times), the current 
visualization that was on the screen (39 times), and the samples that 
were available on the board, e.g. “Can I see something like […]?” 
(77 times). A visual template selection could sometimes be 
categorized in more than one class, e.g. when the participants 
mentioned the name of a visualization and pointed to the sample 
board. Participants used three aspects of the template: visualization 
structure, concrete mappings that were apparent in the template and 

data attributes that were used in the template. Templates were 
typically selected once during the process, although there were 
instances where participants did not select a template or changed 
their initial selection. Even when participants sketched 
visualizations, they did not arbitrarily map data attributes to visual 
properties, but used known templates such as line charts, bar charts 
or trees. 

The visual mapping specification linked a data attribute to a 
visual property. For example, one participant specified a visual 
mapping as follows: “[…] the thickness shows the shipping cost 
[…]”. The linking between visual property and data attribute was 
either in the sentence structure, e.g. using intermediate words such as 
“shows”, “to”, and “on”, or in the synchronicity of gesture and data 
attributes vocalization, e.g. one participant said “and the profits […]” 
and moved her finger along the y-axis of one sample visualization in 
parallel. When using the current visualization as a template, visual 
mappings were often expressed as replacements of already mapped 
data attributes: “[…] instead of region have the different shipping 
modes […]”. Sometimes, participants expressed the mappings in 
more detail by describing how value ranges from the data attribute 
should be mapped to the visual property, e.g. “a size mapping so that 
more sales relate to a larger circle”. The expression of the visual 
mappings often triggered a refinement of the data attribute selection, 
e.g. by adding additional data attributes, or by adding operations 
such as average. A few times, it led to the insight that the selected 
template is inappropriate and triggered the selection of a different 
template.  

After the visualization was shown, participants interpreted it. If the 
participants wanted to change the visualization in some way, this was 
typically the first thing they mentioned, and happened about 5-20 
seconds after it became visible. Sometimes, they noticed something 
they wanted to change later during the interpretation, but this was 
rare. We observed four kinds of refinement: participants altered data 
attributes (32 times), modified visual mappings (32 times), changed 
the appearance (19 times), and switched to a different template (10 
times). These changes triggered the creation and interpretation of a 
new visualization. Appearance refinements did not change the 
visual mappings or data attributes, but were changes to superficial 
attributes of the visualization such as the size, the fonts, and the 
position of legends. During the interpretation phase, the participants 
requested interactions such as showing the names of items on a 
scatter plot using mouse-over. We treated actions that did not change 
the visualization specification as interaction, not as part of the 
creation process. As a result of the interpretation phase, insights and 
new hypotheses were generated. 

4.2 Barriers 

Three steps in the VCCs turned out to be challenging: translating 
questions into data attributes, constructing visualizations that help to 
answer these questions from a set of data attributes, and interpreting 
the visualizations. The users all encountered various barriers  that led 
to frustration and wrong conclusions, and impeded the overall 

Table 2: Common Interpretation Problems 

High visual complexity, due to a high number of data items, 

occlusion, and very spiky line-chart profiles 

Unfamiliar visualization types, e.g. scatter plots 

Inappropriate scaling of measurement mappings (axes, color, 

size) and inappropriate width/height ratio 

Inappropriate size of the visualization 

Difficulties understanding semantics of measurements, 

including the selection operation (e.g. average, sum) 

Inappropriate levels of abstraction, either too high or too low 

Readability problems, e.g. bright colors, small font sizes and 

inappropriate positioning of labels and legends 

Missing numbers 

 



analytics process significantly. When frustration increased, 
participants switched to a different question or goal. Also, problems 
earlier in the process typically led to problems at later stages, e.g. 
problems during visual template selection often led to interpretation 
problems, because an inappropriate template was chosen. 

Decomposing questions and abstract goals into data attributes 
required the participants to decide which data attributes to choose. 
Although this worked well in most cases, sometimes it was 
problematic, e.g. one participant mentioned that the 28 data attributes 
were overwhelming: “I have the questions in my head, like […] 
where is most profit coming from? But I just don’t know how to 
translate that […] because there are so many different categories and 
data attributes to choose from.” Another participant used the high-
level concept of ‘popularity’ like a data attribute, but was unable to 
translate this into a specific data attribute. Yet another participant 
wanted to investigate if one product category should be dropped, but 
did not know what data to look at: “It looks like office supplies is 
doing less well than the [other product categories]. I am not sure 
where I would go from there through using this data.” 

The next step, designing the visual mappings, was the most 
problematic step during visualization construction – seven 
participants had difficulties with this step at least once. We observed 
expression difficulties, and also noticed complete failures to pick 
visualization templates and to design visual mappings. For instance, 
one participant expressed all the required data attributes and the 
presentation goal, but then stopped after trying to sketch the 
visualization: “Actually, I don’t know how I would want to see that – 
never mind”. Another participant wanted to create a visualization 
that showed if there is a Pareto distribution among the customers: 
“What I would like to know is whether there is just a small core of 
customers […] accounting for a large portion of the overall sales.” 
He then thought how this could be visualized, but failed after 
considering a bar chart and trying to sketch his idea: “I can’t think of 
a way that would show that very easily – let’s look at something 
different then.” Several minutes later, he revisited that problem and 
succeeded in specifying a visualization. Yet another participant 
struggled with visual template selection and often selected visual 
templates that did not match selected data attributes well, resulting in 
useless visualizations, e.g. trying to see ‘time since order placed’ and 
‘ship modes’ on a scatter plot, which resulted in a scatter line with 
heavy over plotting, because the ship mode dimension was 
categorical. Seven participants completely omitted template and 
visual mapping selection 20 times overall. One participant, who 
omitted visual template selection a couple of times, said during the 
interview: “I was hoping […] I could get an answer from somebody 
which would be the best way to look at this data.”  

All participants had problems interpreting visualizations. The 
main sources of confusion and problems are displayed in Error! 
Reference source not found.. For example, one participant 
misinterpreted a sorted bar chart as a trend, because the height of the 
bars was falling. Participants tried to solve these issues by changing 
the visual mappings or the aesthetics of the visualizations, but we 
observed several cases among 4 participants which led to 
interpretation mistakes and frustration. In general, interpretation 
problems led either to a refinement and clarification of the 
visualizations, if they were discovered by the participants, or to 
interpretation mistakes and wrong conclusions, if they remained 
undetected. 

4.3 Partial Specification 

We observed a strong tendency towards omitting parts of the 
visualization specification among all participants. This trend was 
prevalent at all steps of the visualization construction process, i.e. 
selecting the data attributes, selecting the visualization template, and 
specifying the visual mappings. The importance of the omitted 
information ranged from complete steps, e.g. not specifying the 
visualization template, to smaller details.  

The most common forms of partial specification we observed 
were:  not specifying visual mappings for selected data attributes (63 

times); not specifying which operator to apply to measurement data 
attributes if they are grouped together or that they should not be 
grouped (62 times); not specifying data attributes for higher level 
concepts such as time, location, importance or measurements (30 
times); not specifying a visualization template when visual mappings 
were insufficiently specified (20 times); and not specifying level of 
abstraction for time (10 times). Also, participants almost never 
mentioned the presentation goal, e.g. comparison or looking for 
trends, and omitted data attributes if they mentioned concrete data 
values, especially when filtering, e.g. “Could I look at Washington 
state [implies data attribute ‘state’] for furniture [implies data 
attribute ‘product category’], specifically, and maybe look at the 
profit on that in terms of a bar chart […]”. 

Typically, several things were left unspecified in each 
visualization construction cycle. For example, consider the following 
specification made by one participant: “Can I see something like C 
[points at sample depicting line chart] just annually over the four 
years with the sales and the profit and see those as separate colors?” 
This specification leaves out the visual mappings except the color 
mapping, it does not mention how composite values should be 
calculated, it does not specify which data attribute for time should be 
selected, and it omits the presentation goal. 

However, the omitted information could often be inferred from 
the context. We observed four sources that participants seemed to 
use for such default reasoning: data values implying data attributes, 
matching structure and types of selected data attributes and 
visualization properties, visual mappings from visualization 
templates, and the current analysis session state. 

To give an example for matching structure, one participant asked 
“Could I just see the furniture data for Massachusetts divided by 
product subcategory in terms of total sales with a bar chart?”. Here, 
the mappings to concrete visual properties such as bar length and 
bars are not specified, but it is obvious that the bars should represent 
the product subcategories and the bar length should encode the total 
sales per product subcategory. This is because the structure and type 
of the selected data attributes (category with related measurement) 
matches the structure of the visualization (bars with bar lengths). 

We observed that participants seemed to assume defaults based on 
the mappings visible in the visualization templates and the current 
state of the visualization. This was particularly true for time 
attributes. For example, one participant omitted the specification of a 
time mapping and did not pick a data attribute for time, but looked 
confused when the mediator responded that more data attributes were 
required, and immediately said “I guess quarter, if we did it by 
quarter?” The requested visualization template contained a time 
mapping and quarter was used as time unit in the previously 
analyzed visualization, so a reasonable default could have been 
inferred. 

4.4 Visualization Choices 

The most popular visualizations were bar (34% of constructed 
visualizations excluding data tables), line (23%) and pie charts 
(13%).  Maps were also used frequently (12%). Two factors seemed 
to influence their visualization choices: familiarity with visualization 
types and heuristics based on selected data attributes and operations. 
Preference for familiar visualizations was a prevalent theme; it is 
discussed in detail below. Some of the heuristics we observed were 
pie charts for whole-part analysis, line charts for trend analysis, and 
maps for information on geographical entities. While we were able to 
identify those heuristics and observed that they were used frequently, 
we do not know what other heuristics were used or how consistently 
they were applied. 

There were many cases where guidelines (e.g. [9]) suggest 
different visualizations than those chosen by the participants. E.g. 
participants often used pie charts to perform whole-part analysis, 
whereas Few [9] recommends bar charts. The participants also used 
maps in cases where they wanted to compare measurements among 
states, where bar charts would have been preferable as well. We also 



observed a couple of cases where participants used bar charts instead 
of line charts for trend analysis. 

We observed that participants strongly preferred visualization 
types that they were familiar with, typically line, bar, and pie 
charts. The pilots indicated that this preference would be interesting, 
and thus we added specific questions addressing this issue to the 
background questionnaire and follow-up interview. We first asked 
the participants about their familiarity with visualization types in the 
background survey, then observed their visualization choices during 
the observation session, and finally asked them about their 
preferences for familiar visualizations in the follow-up interview. 

In the background questionnaire, participants were asked to choose 
known visualization types from 16 samples, and rank those by their 
familiarity. These visualizations were different from the samples on 
the board:  samples on the board only depicted visualizations that are 
possible in Tableau, whereas these samples also included node-link 
diagrams and tag clouds. Participants were familiar with 4 to 14 of 
these visualizations. We counted which visualization types were in 
their top three choices. Pie charts (selected by 9 participants), bar 
charts (by 8) and line charts (by 5) were the more popular 
visualizations. Next, we counted how often each visualization type 
was created during the observation session. We found that those 3 
diagram types accounted for over 70% of the constructed 
visualizations (excluding data tables). 

The participants reported a strong subjective preference for 
familiar visualizations. Four participants said they always used 
familiar visualization (5 on a 5-point Likert scale from 1=never to 
5=always used familiar visualizations), four participants said they 
almost always used familiar visualizations (4 on the Likert scale), 
and one participant slightly preferred familiar visualizations (3.5 on 
the Likert scale). They reported that they preferred familiar 
visualizations because they understand them well and the 
visualizations can be quickly and simply applied. Some participants 
mentioned that they would use a broader range of visualizations if 
they knew more about them, and also that they can understand 
complex visualizations, but find it too hard to produce them. 

4.5 Semantic Information, Additional Data and 
Prediction 

Several times, participants requested additional semantic information 
to clarify their understanding of data attributes. For example, several 
participants asked what the data attribute “time to ship” represented. 
Similarly, participants requested information outside the scope of our 
data set, typically to explore hypotheses. For example, three 
participants asked for the location of the company warehouses, stores 
or headquarter and one requested demographic data. We also 
observed several times that the participants wanted to predict the 
impact of a decision that they were considering as a result of their 
data analysis: “What I am wondering is if the company could just 
focus on technology […] maybe that would save money”. 

5 D ISCUSSION 

Based on our findings, we propose a model of the barriers InfoVis 
novices encounter and a model that describes how novices might 
think about visualization specification. 

5.1 Barriers 

The steps that are challenging for InfoVis novices - translating 
questions into data attributes, constructing visualizations, and 
interpreting the visualizations - are related to converting between 
different representations: concepts that are part of the mental 
model of the user, data that are contained in databases and 
information repositories, and visualizations. Figure 5 depicts a 
simplified model of the overall visual data exploration process we 
observed in the study. The InfoVis novices face a data selection 
barrier (1, selection barrier) when they try to find the right data 
attributes and relevant data sets for their higher level questions which 

are expressed in concepts as part of their mental model. For selecting 
the right data attributes, they have to understand the meaning of the 
attributes and how they relate to the higher-level concepts. After 
selecting the data, the next barrier (2, visual mapping barrier) is to 
transform these data into a visual representation that supports 
answering their questions. Finally, the visualization needs to be 
related back to the concepts in the mental model to make sense out of 
it, which was again a source of challenges that we observed in the 
study (3, interpretation barrier).  

This model shares the main elements (users’ cognitive processing / 
mental model, data, visualization) with more complex models of the 
visualization process (e.g. [3, 6, 35, 38]), but was simplified by only 
including those activities and elements that are relevant to the 
barriers that we observed. We did not include interaction with 
visualizations, because we did observe this due to our study design, 
but we recognize that this might be an additional source of 
difficulties [21].  

Previous work in information visualization provides further insight 
into barriers to visual analysis. The worldview gap and the rationale 
gap described by Amar and Stasko [2] refer to difficulties relating 
the visualization to higher-level analytical activities (interpretation 
barrier). Kobsa reports high cognitive setup costs when using 
Spotfire (visualization barrier) as well as general interpretation 
problems (interpretation barrier) in his study of three visualization 
systems [19]. Lam surveyed 32 user studies on information 
visualization and derived a framework of interaction costs that 
includes costs for choosing a data subset (selection barrier) [21]. 
Related barriers are also well-known in user interface design in 
general. Norman’s gulf of evaluation is similar to the interpretation 
barrier and the selection and visual mapping barriers represent the 
gulf of execution in visualization construction [27]. To bridge the 
gulf of execution, we need to understand the mental model 
visualization novices have of visualization specification. 

5.2 Mental Model of Visualization Specification 

While the different models of the visualization process [3, 6, 35, 38] 
take user interaction and input into account, they emphasize 
visualization construction as the transformation of raw data into 
visual representations. Although this is a very useful description of 
the algorithmic processing, the observations from our user study 
indicate that InfoVis novices think differently about visualization 
specifications. We think that the following characteristics are central 
to the mental model novices have about visualization specification: 
 
(1) Separation between data/concept space and visual structure. 

The participants in our study thought about data attributes and 
concepts often without visual structures or properties being 
involved, e.g. when they formulated hypotheses or initially 
selected data attributes. This indicates that they perceive these 
to be separate from the visual structure. 

Fig.5. Barriers in InfoVis Novices’ Visual Data Exploration Process. 

Barriers are indicated with lightning bolts. 1: selection barrier; 2: visual 

mapping barrier; 3: interpretation barrier 



(2) Limited distinction between data attributes and concepts. 
The participants in our study had trouble distinguishing between 
concepts and data attributes and converting from concepts to 
data attributes. They instead tried to use higher level concepts in 
the visualization mappings, and had more trouble with data 
attributes that less closely resemble higher level concepts (e.g. 
‘time to ship’ was harder to use than ‘sales’). This indicates that 
they only used lower-level data attributes such as ‘time to ship’ 
because the higher-level concepts were not available. 

(3) Concrete values can be used instead of data attributes. The 
participants frequently used data values, e.g. concrete product 
line names, instead of the data attributes. 

(4) Relationships between concepts, data attributes and values. 
The participants were aware of relationships between concepts, 
for example that profit can be calculated for product lines, and 
that orders could be analyzed over time because they have at 
least one time attribute. They used those relationships when 
defining which data should be displayed in the visual structure, 
even when they do not define how these relationships are 
mapped on the visual structure side (see 4.3). 

(5) Composite elements in visual structures. The participants 
used higher-level elements in visual structures, such as bars, 
pies, tree nodes, states on a map directly. These composite 
elements are constrained in the way that they are drawn. For 
example, the bars are rectangles which are aligned to the axes. 
The composite elements expose both standard visual properties 
such as color and specific visual properties such as bar height. 
Both types of visual properties were used by the participants, 
which indicates that they understood how the composite 
elements are compiled and which visual properties they expose. 

(6) Visual structure templates. As discussed before, the 
participants used templates that define the general elements and 
composition of the visualization, e.g. a map or a line chart. This 
indicates that they consciously think about those elements, 
especially when they are aware of their names. 

(7) Linking between data/concept space and visual structure. 
The participants linked the concepts and data attributes they 
wanted to see to visualizations, either in a generic form (“show 
me sales by product line in a pie chart”) or by applying specific 
visual mappings from concepts/data attributes to elements and 
properties from the visual structure. This shows that they are 
aware of the need to create links between the two. 

While these characteristics reflect the lack of visualization 
experience on the part of  InfoVis novices, we believe that they can 
provide a better understanding of the kinds of  visualizations InfoVis 
novices can construct easily, and where they have difficulties. The 
proposed mental model can be used to provide better cognitive 
support for visualization constructions tasks, as we will discuss in 
the next section. 

6 IMPLICATIONS FOR TOOL DESIGN 

Based on our findings and the model presentation in the discussion, 
we derive implications for how tools can better assist InfoVis 
novices in constructing visualizations.  

6.1 Provide Search Facilities to Retrieve Data 

The participants had trouble selecting data attributes from a large set. 
We found that they often knew concrete data values, e.g. ‘Texas’, 
and context of the data attributes they were looking for, e.g. sales. 
Therefore, we believe that keyword-based textual queries would help 
them find those data attributes. Using semantic information might 
even enable the search for data attributes that relate to higher-level 
concepts such as ‘top-sellers’ or enable the system to infer data 
attributes from concrete values such as ‘2009’. Supporting more 

advanced queries that contain several data attribute references and 
their relationships, e.g. ‘sales by product line 2009’, might be 
beneficial. We observed participants stating such queries several 
times, and therefore believe that such query patterns can be 
expressed by InfoVis novices and might even be typical.  

Tool support could also leverage semantic relationships and 
specific rules to find and rank potentially relevant data attributes 
related to user queries. For example, imagine the user enters the 
query ‘sales 2009’. The system could choose orders as the relevant 
database table, because sales are related to orders. It could then 
prefer the date of order over the date of receipt as data attribute for 
the value ‘2009’, based on a company rule that specifies that sales 
should be calculated based on the date of order. The retrieved data 
attributes could be used as input for suggesting visualizations. 

6.2 Suggesting Visualizations 

InfoVis novices also have difficulties designing visual mappings. 
Their lack of visualization knowledge leads to the construction of 
non-optimal visualizations. However, they can express which data 
attributes they want to look at and how those relate, how they want 
to split, filter and sort the data set, and what operations to apply with 
less effort and difficulty. Tool support that suggests potential 
visualizations could help users to surmount the visual mapping 
barrier, as proposed by Heer et al. [14]. Such suggestions could be 
displayed both after the user described what data he wants to look at 
and in the context of the current visualization, like the ‘Show Me’ 
approach [23]. The former would help the user create visualizations 
from scratch, while the latter would help with refinement. We 
believe that the suggestions should be thumbnail previews based on 
the data selected by the participants, because this would help users to 
evaluate the usefulness of suggestions in the context of the chosen 
data. Previews could be displayed using a gallery-based approach 
[10, 24], enabling easy comparison of alternatives. This could help 
the users to familiarize themselves with alternate visualizations 
which might represent the data in a more useful way, and thus 
address the problem that users prefer visualizations they are familiar 
with, even though they may be less effective. 

Suggestions could be generated by the algorithms from research 
on automatic visualization (e.g. [4, 10, 22, 23, 33]). Based on our 
findings, we believe that three types of information besides the actual 
data attributes should be used to guide the automated visualization 
algorithms: 

Semantic meta-information includes attribute types as well as 
connections between the data attributes. For example, if there are 
meta-data that state how three hockey stats are related ‘points = 
assists + goals, goals >= 0, assists >= 0’, and the user wants to 
visualize those three data attributes for several players, the system 
can use this information to show a stacked bar chart instead of a 
simple bar chart with one bar per data attribute. 

High visual complexity and inappropriate scaling were frequent 
problems during interpretation. By analyzing the available screen 
real-estate and the data distribution, automatically generated 
visualizations can be improved on two levels: by choosing 
visualization types that work best for the given screen real-estate and 
number of data points, and by optimizing the visualizations using 
techniques such as clutter reduction [8] or banking lines to 45º [13]. 

Knowing the presentation goal is essential in order to create 
visualizations that support the user in successfully analyzing data. 
While several automatic visualization algorithms take this into 
account (e.g. [4, 33]), the goal remains hard to elicit [23]. One 
possible approach is to monitor the user’s behavior [11]. We 
observed that users sometimes stated goals such as “compare”, and 
that they often seemed to have an intuitive understanding of how 
well a visualization supports them in reaching their goal. We believe 
that this could be leveraged to elicit the presentation goal, for 
example by presenting them a gallery of visualizations that are tuned 
towards different goals, and letting them pick what they think best 
supports their task. 



6.3 Supporting Iterative Specification 

We observed that visualizations are constructed through a series of 
iterative refinements. This can be regarded as an explorative search 
for a visualization that is good enough to support the user in reaching 
his/her goal. This iterative search for appropriate visualizations can 
be supported by several mechanisms in a visualization construction 
tool. Rapid feedback in the form of usable visualizations can help the 
users to stay immersed in the process of visualization creation and 
exploration. It should be easy for users to try out visualizations, and 
mistakes in their choices should not hamper them too much.  
Premature commitment should be avoided, for example by providing 
previews, undo/redo, graphical histories [15] and the ability to take 
snapshots of the current visualization. Similarly, the user should be 
able to change visualizations and visual mappings quickly, for 
example using drag and drop as in Polaris/Tableau [36], and the 
system should not prescribe in which order data attributes selection, 
visual template selection and visual mapping specification should 
take place. Also, the mechanisms described in Sections 6.2, 6.4 and 
6.5 could facilitate and guide iterative visualization construction. 
Overall, the tool should encourage the user to explore configurations 
rapidly. This serves three purposes: finding an appropriate 
visualization, seeing the data from different perspectives and gaining 
experience with the visualizations.  

Many available visualization systems already offer some or many 
of these features, e.g. undo/redo is a common feature. However, we 
believe there is still much room for improvement. For example, 
visualizations are often constructed using wizards, which lead to 
premature commitment, and previews are seldom used. 

6.4 Dealing with Partial Specification 

Partial specification was a prevalent pattern that we observed. 
Incomplete specifications were similarly found by Miller for 
programming in natural language [25]. Miller suggests that targeting 
people instead of computers as receivers of the instruction might be a 
cause. That is, participants may have left out information because 
they knew there was a human operator. However, Pane et al. found 
that imprecision and underspecification also occur when users know 
the computer is receiving the instructions [28]. We believe such 
partial specification happens for two main reasons: users’ mental 
models of the specification structure are simplistic and they therefore 
do not consider certain aspects (see Section 5.2), and users omit 
elements that are implicit in the context or can be inferred from other 
parts of the specification.  

While partial specification may have been caused by the mediator 
in our study, we believe it is important to design for partial 
specification. By flexibly dealing with partial specification, the 
system could respond in a way that the user perceives as intuitive, 
thereby increasing the user’s efficiency in communicating intended 
visualizations. For example, defaults and mappings can often be 
inferred. Marking those settings as inferred could further help the 
user understand what parts she specified and how the system reacted 
to this. When good defaults cannot be inferred, the system could ask 
the user to clarify those aspects, e.g. by presenting her with a list of 
choices. For all defaults, it is important to pick sensible values, as 
noted by Heer et al. [14]. 

6.5 Providing Explanations and Supporting Learning 

InfoVis novices typically lack visualization and analysis experience 
and knowledge, but such an understanding is important to create and 
interpret visualizations. We therefore believe that it is not just 
important to enable users to create visualizations, but to support them 
in learning how to use and interpret them. While showing 
explanations of what is displayed was already suggested by Heer et 
al. [14], we believe it is important to go a step further by explaining 
why these visual mappings are used, i.e. by providing reasons, 
advantages and disadvantages to enable InfoVis novices to make 
better visual mapping decisions in the future. 

When the system suggests visualizations or infers defaults, it 
should provide explanations about why it has chosen those items and 
what their advantages and disadvantages are. This will help users to 
decide which visualization to pick and which inferred default they 
might want to change. The system could also provide semantic 
explanations about the data attributes that are visualized – simple 
legends that show how the data attributes are mapped to visual 
properties are not enough in many cases, as we found. For example, 
the tool could explain what ‘time to ship’ means in the context of the 
shipment process, thus providing a semantic context. A caption 
generation system such as the one described in [26] could be 
leveraged to create such explanations.  

Similarly, a system could provide contextual help on 
visualizations that explains which patterns can typically be observed 
in the current visualization type, and how to interpret them. It could 
also analyze the current visualization and point out its strengths and 
weaknesses, as well as potential interpretation problems. 

6.6 Tight Integration into Visual Analytics Process  

Visual mapping is only relevant and useful in the larger context of 
visual analytics. Therefore, we propose that it is important to embed 
tool support for flexible visualization construction into tool support 
for visual analytics. Such an environment would provide support for 
searching data attributes, searching and integrating additional data 
sources, and accessing semantics, among other things. We consider a 
tight integration between those different activities to be very 
important to enable successful visual analytics for InfoVis novices, 
because the differences between activities might not be apparent to 
them and they are likely to switch opportunistically between 
activities. For example, semantic information could be accessed from 
within a visualization and used to modify or extend the visualization, 
or even to create new visualizations. Similarly, the visualization 
context could be used to search for data attributes similar to those 
within a visualization. 

7 CONCLUSIONS  AND  FUTURE  WORK 

We presented a study on how InfoVis novices construct 
visualizations. We learned which activities are central in 
visualization specification and how they are related (summarized in 
Fig. 4.), we identified three major barriers in the data exploration 
process (selection, visual mapping, interpretation), and discovered 
that InfoVis novices do not fully specify visualizations and that their 
visualization choices are driven by heuristics and familiarity with 
visualization types.  Based on these observations, we derived a 
model of how novices might think about visualization specification, 
and suggested that tools should facilitate searching for data 
attributes, automatically create different visualizations and present 
them as choices, provide explanations, and support learning.  

The tool implications presented here are based on empirical 
evidence; however, we believe that further evaluation on how 
concrete implementations support InfoVis novices in creating 
visualizations is warranted. Our future work involves incorporating 
the tool suggestions into prototypes that will facilitate further 
experimentation and improve our understanding of how novices can 
more effectively construct and interpret visualizations.  We hope that 
this research will bring us one step closer to making information 
visualization accessible to everyone, not just to expert analysts. 
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