Discovering Natural Language Commands
in Multimodal Interfaces

Arjun Srinivasan” Mira Dontcheva

Georgia Inst. of Technology Adobe Research
Atlanta, GA Seattle, WA
arjun010@gatech.edu mirad@adobe.com
ABSTRACT

Discovering what to say and how to say it remains a challenge
for users of multimodal interfaces supporting speech input. Users
end up “guessing” commands that a system might support, often
leading to interpretation errors and frustration. One solution to this
problem is to display contextually relevant command examples as
users interact with a system. The challenge, however, is deciding
when, how, and which examples to recommend. In this work, we
describe an approach for generating and ranking natural language
command examples in multimodal interfaces. We demonstrate the
approach using a prototype touch- and speech-based image editing
tool. We experiment with augmentations of the UI to understand
when and how to present command examples. Through an online
user study, we evaluate these alternatives and find that in-situ
command suggestions promote discovery and encourage the use of
speech input.

CCS CONCEPTS

+ Human-centered computing — Natural language interfaces;
Human computer interaction (HCI);

KEYWORDS

Natural language interaction, Multimodal Interfaces, Discoverabil-
ity, Adaptive Interfaces, Photo Editing

ACM Reference Format:

Arjun Srinivasan, Mira Dontcheva, Eytan Adar, and Seth Walker. 2019. Dis-
covering Natural Language Commands in Multimodal Interfaces. In 24th
International Conference on Intelligent User Interfaces (IUI ’19), March 17-20,
2019, Marina del Rey, CA, USA, Jennifer B. Sartor, Theo D’Hondt, and Wolf-
gang De Meuter (Eds.). ACM, New York, NY, USA, Article 4, 12 pages.
https://doi.org/10.1145/3301275.3302292

1 INTRODUCTION

Discovering what spoken commands a system will understand, and
how commands should be phrased, remains a long-standing chal-
lenge for users of natural language interfaces (NLIs). Improvements
in speech-to-text engines and prevalence of commercial speech

“This work was done during the author’s internship at Adobe Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IUI ’19, March 17-20, 2019, Marina del Rey, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6272-6/19/03.

https://doi.org/10.1145/3301275.3302292

Seth Walker
Adobe Research
San Francisco, CA
sewalker@adobe.com

Eytan Adar
University of Michigan
Ann Arbor, MI
eadar@umich.edu

interfaces as part of speech-only and multimodal solutions have
introduced more end-users to this modality [5, 9, 27, 32, 35, 39].
However, the ‘invisible’ nature of speech, relative to other graphical
user interface (GUI) elements, makes it particularly challenging for
users to learn and adopt. Discoverability, in this context, entails:
(1) awareness—making users aware of the operations that can be
performed using speech; and (2) understanding—educating users on
how requests should be phrased so the system can interpret them
correctly. Lack of support for these discovery-oriented design goals
often results in users having to guess or ‘hunt-and-peck’ for sup-
ported commands and phrasings [31, 47]. However, because guesses
are more likely to be misinterpreted and cause increased errors,
people may be discouraged from using speech input altogether.

Multimodal interfaces supporting speech+touch or speech+mouse
input offer an advantage over speech-only interfaces. Because these
modalities have complementary strengths [10], touch can help peo-
ple use speech more effectively and vice-versa. For example, in a
multimodal document reader, a speech-only interface may make it
hard to ask for the pronunciation of a word. The end-user would
need to guess the pronunciation of the same word they want the
system to pronounce. Alternatively, with a speech+touch interface,
a user can point to a word and ask for its pronunciation. Conversely,
speech can help touch-only or mouse-based interfaces too. For in-
stance, consider the case of a drawing tool where a user wants to
add multiple instances of a red rectangle. The user first needs to
learn how to add a shape and style it using the GUI, and then repeat
this operation multiple times. The speech-driven alternative would
be for the end-user to simply point to the canvas and say, “add
three red rectangles here” As applications begin to support more
intelligence (e.g., entity recognition in images), the opportunity
for multimodal interaction grows. For example, in a multimodal
image editor, a user can point to a person in a photo and say “re-
move shadow on face” However, the question remains: how does an
end-user discover what they can say and how to say it?

In our work, we rely on two observations to enhance discoverabil-
ity. First, by interactively selecting targets, non-speech modalities
can help the end-user focus the high level question “what can I say?”
to “what can I say here and now?” Second, our ability to contextually
overlay text allows us to provide relevant command suggestions
directly in the interface. Past work has shown that this type of
feedback can enhance discoverability in NLIs [11, 19, 24]. Example
commands can be made contextually relevant not only based on
current workflows but also on explicit interaction. More broadly, we
propose that the touch modality offers an opportunity for teaching
speech commands. By providing examples relevant to the touch
target, the interface performs double duty for discoverability.

https://doi.org/10.1145/3301275.3302292
https://doi.org/10.1145/3301275.3302292

IUI ’19, March 17-20, 2019, Marina del Rey, CA, USA

The reality of multimodal interfaces, in particular when one
modality (i.e., speech) relies on Al and can fail to perform as in-
tended, is that end-users are likely to switch to a more reliable form
(e.g., mouse or touch). While potentially less expressive, most GUIs
also support directed exploration, which may be more comfortable
or convenient than speech. In other words, while the modalities
may be symbiotic, end-users may come to rely on one more than the
other, further hindering discovery. Our approach, however, takes
advantage of situations where non-speech interaction is used to
provide speech examples. We can provide both immediately useful
examples and create a ‘teachable moment’ for helping the user
discover commands and phrasings useful in the future.

To better understand alternatives for command discovery, we
implement a prototypical speech+touch image editor. In addition
to more standard features (e.g., image filters), our prototype also
supports entity recognition which creates referenceable objects.
Thus, while supporting speech commands that reference the GUI
(e.g., “activate the draw tool”) our prototype also supports speech
commands that reference image objects such as “apply a sepia filter
on the dog” and multimodal commands with deictic phrasing: “set
the border size of this to 5”

To help users discover and learn this variety of speech commands,
we present an approach for generating and ranking command sug-
gestions. Using this approach, we implement three interface vari-
ants of the speech+touch image editor to present contextually-
relevant command suggestions. The variants include an interface
that presents suggestions using a standard list-based view, one that
uses contextual overlay windows to present suggestions, and a third
that embeds commands within the GUIL The proposed interfaces try
to make users aware of what can be done and simultaneously teach
them how the commands can be invoked (e.g., phrasing variants and
multimodal interactions). To understand the pros and cons of the
interfaces and assess if they aid discoverability, we conducted a
preliminary user study online, allowing participants to use the sys-
tem on their own devices without the presence of an experimenter.
We report findings from the study highlighting observations and
participant feedback indicating that in-situ command suggestions
promote discovery and encourage the use of speech input.

2 RELATED WORK

Discoverability, as we define it, relates to two pieces of the broader
learnability space [23]. Specifically, we are interested in awareness
and understanding. These represent a long-standing challenge for
speech-based interfaces [26, 37, 43, 46]. In fact, not knowing what
commands are available or how to phrase them is the second most
common obstacle faced by users of speech interfaces (after speech-
recognition accuracy issues [31]). One common approach to address
the lack of discoverability is to present users with lists of example
commands as part of the onboarding experience or as notifications
when new commands are available. For example, Apple’s Siri [2]
presents a list of example commands at start-up and lets users
invoke the “Some things you can ask me” menu to see command
examples on-demand. To make users aware of new or infrequently
used commands, companies like Amazon and Xfinity send weekly
emails to owners of their devices (Alexa and the voice-driven X1
set-top box, respectively) listing “New things you (users) can say.”

Srinivasan et al.

However, displaying example commands periodically or during
onboarding may not be sufficient as users tend to forget these
commands while performing tasks [14].

An alternative for supporting discovery is to directly present
contextually-relevant commands while the end-user is interacting
with the system. An ‘always-on’ approach might be an overlay panel
displaying all commands that can be issued based on the active
tool [24]. A more user-driven version is a “What Can I Say?” menu
that shows commands relevant to the active application [11] on a
mobile device (e.g., if the email application is open, the menu sug-
gests commands like ‘Compose Email’, ‘Reply’). Such an approach
may be familiar to the users of the traditional ‘F1° contextual help
key [40]. For widgets represented only by graphical icons (i.e., ones
without labels) numeric labels can be added dynamically to support
reference [11]. More recently, Furqan et al. presented Discover-
Cal [19], a speech-based calendar system that adaptively displays
command templates depending on the current task (e.g., setting
up a meeting) and previously issued commands. In our work, we
extend these strategies but focus on both generating and presenting
contextually relevant command suggestions in a multimodal inter-
face. Our approach enables discovery by providing examples for
speech when non-speech modalities are used (e.g., through touch) .

Our work also builds upon adaptive user interfaces [3, 16, 36]
and contextual tool recommendations [29, 48]. Our focus is on
extending this research but specifically to support discoverabil-
ity. Adaptive interfaces employ varied strategies to tailor system
functionality to a user [15]. Leveraging prior work, to suggest con-
textually relevant commands and help users incrementally explore
commands, we employ both highlighting [41] and frequency-based
adaptation [30] strategies. While most traditional adaptive inter-
faces focus on optimizing the ‘local’ experience of the end-user,
examples for discoverability can take into account longer-term
objectives (e.g., learning). That said, prior work on command rec-
ommendation has identified design criteria that are directly relevant
to discoverability. For example, past research has found that com-
mand recommendations work better when displayed in context and
are self paced [29]. We also let users discover commands at a their
own pace by allowing them to incrementally explore commands
pertaining to different parts of the interface.

3 DESIGN SPACE

For consistency in framing our design space, we define a few key
terms using the motivating example of a multimodal image editor.
Our application is built to support user utterances, or commands
(e.g., “Change fill color to red”) and linguistic variants, or phrasings
(e.g., “Make fill red”). Commands are built around system actions,
or operations (e.g., applying filters to an image, changing fill color,
selecting tools). Most operations have modifiable parameters (e.g.,
filter names, color names, tool names) and operate on one or more
targets (e.g., selected region of an image, a shape on the canvas).
To support discoverability, our goal is to produce example natural
language commands and phrasings.

The design space for producing and displaying examples requires
answering a number of driving questions: when should we show
examples? Which examples should we show? And where should we
show them? As with most designs of this type, one decision is likely

Discovering NL Commands in Multimodal Interfaces

to impact another. For example, deciding where to show example
commands may be constrained by the interface’s state when we
show them. We note that while we suggest an extensive range of
specific design approaches, there are many additional options.

A unique challenge for discoverability in intelligent user inter-
faces is that components of the system will invariably be unreliable.
For example, speech recognition may fail entirely or make mistakes,
and a user’s command phrasing may only be partially supported.
Discoverability in these contexts requires improving the user’s
awareness and understanding not only of the possible commands
but also failure cases. Users may also expect and tolerate these
failures. Paradoxically since failure happens frequently, it may be
easier to model failure cases than in traditional interfaces.

3.1 When to show command suggestions?

During onboarding. Most if not all applications do onboarding of
available tools and features when users first start the application.
This is a natural time to expose users to the supported operations
and commands. Unfortunately, context such as the user’s tasks
or actions is missing. The generic onboarding experience often
leads users to close these walkthroughs or forget the presented
commands [14].

During a session. In order to guide users in performing their tasks
and provide task-specific suggestions, prior work has explored sug-
gesting commands while a session is in progress [11, 19, 24]. These
suggestions can be explicitly requested by users (e.g., search) or the
system can automatically suggest commands at preset intervals or
based on specific user interactions (e.g., recommendations). Most
modern applications shy away from proactive approaches and rely
on reactive solutions, because interrupting users may be disruptive
to the users’ workflow [17, 45].

As feedback for failed utterances. An important component in
any multimodal system that supports speech input is providing
feedback for input commands. Feedback messages offer another op-
portunity to teach natural language commands. For example, when
a command fails, the feedback can include examples that correct
the errors. However, interpreting user mistakes and system errors
in a complex system is not easy, and offering effective feedback
messages may require building a separate interpretation system
altogether. Furthermore, if one could reliably guess the intent from
an incorrect utterance it may simply be better to execute it.

3.2 What commands to suggest?

Number of suggestions. Selecting the “right” number of com-
mands to suggest is influenced by many factors including interface
design, screen size, user context, etc. A system could suggest an ex-
haustive list of commands to make users aware of what operations
are possible and the different ways to phrase commands. However,
a long list is hard to remember and may be overwhelming. Slight
variants in phrasing or parameters may also be less useful, as the
end-user can readily infer a broad pattern from a small number of
examples. A ‘top N’ list of examples may be easier to interpret but
may not expose users to all possibilities.

Relevance. Prior work has shown that commands suggested in the
context of an application [11] or task [19, 46] aid discoverability.
However, when there are multiple operations that are applicable,

1UI ’19, March 17-20, 2019, Marina del Rey, CA, USA

some operations may be more relevant than others. A simple ap-
proach is to suggest all contextually-relevant commands. Alterna-
tively, suggestions can be weighted by frequency of use, required
expertise, etc. A separate concern is the balance of “relevant now”
versus “relevant later” [29]. Both have advantages for discoverabil-
ity but may have different effectiveness (both based on task context
and individual differences in learning and memory).

Complexity. With natural language input, users can specify mul-
tiple operations or parameter values in a single command. For
instance, to insert a rectangle that is colored red, one might issue
the commands “Insert a rectangle” and “Change fill color to red”
Alternatively, one can issue a single command to perform both
operations (e.g., Insert a red rectangle”). While complex commands
are more efficient, they can be longer and more difficult to learn
and say. The effectiveness of complex or simple commands may
be impacted by the end-user’s ability to isolate generalizable parts
of the command and how much scaffolding they require. When to
suggest simple commands, complex commands, or a combination
likely varies by the target domain, command language, and users.

Variance in phrasings. Most NLIs strive to be as “natural” as
possible by interpreting a broad range of linguistic variability. For
example, “color red,” “change fill to red, “fill it with red, and “make
this red” all may refer to the same command. In teaching people
what a system can understand, it is important to consider how
much variety to show. Showing a lot of variety may lead users
to think the system is “smarter” than it actually is. Showing only
one or two phrasings may lead to higher accuracy but may feel
“unnatural” The accuracy of the system in interpreting ambiguous
or out-of-vocabulary language must naturally play a role in how
phrasing variants are presented.

Variance in parameter values. When showing suggestions that
include parameters, it is worth considering whether to vary param-
eter values within the suggestions. For example, the suggestion “fill
with red” can vary with different color values. Varying parameter
values shows users a range of applicable values but this variance
may be confusing to those who expect consistent examples. An
alternative is to show templates (e.g., “fill with [color]”), which
highlights the parameters but does not offer specific values.

3.3 Where to display suggestions?

One common approach for display is through a fixed region of
the interface (e.g., side panel). However, a side panel is easy to
close and requires that users divert their attention from the task at
hand [8]. As an alternative, contextual menus anchored by direct
manipulation could help with visual attention but may occlude
parts of the interface. A hybrid approach that uses both a panel and
contextual menus may offer the best of both worlds. However, this
may require more space and lead to unnecessary redundancy.

4 EXAMPLE APPLICATION: IMAGE EDITOR

We study discoverability of natural language commands in the con-
text of a commonly used application, an image editor. We chose
this domain because image editing is a popular task, has a vari-
ety of operations, and can be performed on mobile devices where
speech interfaces are most applicable. Additionally, prior work has

IUI ’19, March 17-20, 2019, Marina del Rey, CA, USA

Srinivasan et al.

Activate the draw tool

Operation Parameters Applicable to Phrasing Templates Examples
Apply a filter on Apply a grayscale filter on all cars
. Canvas image, Entity, | Add a effect to the canvas Add a heavy saturate effect to the canvas
Add Filter *name, value K . .
Region, Image tile Add effect here Add light morph effect here
Apply _____filter Apply sepia filter
Set the value of the filter on to Set the value of the sepia filter on the person to light
Filter | Edit Filter *name, *value Can.vas image, I%ntity, Change __effecton_____to____ Change grayscale e{"fect on all images to heavy
Region, Image tile Make filter Make morph filter light
Set effect to Set saturate effect to heavy
Remove the canvas _____ effect Remove the canvas morph effect
: . Canvas image, Entity, | Delete the filter on Delete the sepia filter on the dog
Remove Filter | *name R K ‘ R K
Region, Image tile Delete the ___ effect on this Delete the sepia effect on this
Remove all filters Remove all filters
Update the fill color on to Update the fill color on all rectangles to blue
Fill Color *color Shape Change the colorof ____ to . C'hange the color of the rectangle to red
Fill Fill orange
Set fill to Set fill to blue
Change the border colorof _____ to o Change the border color of the rectangle to green
Style | Border Color | “color Shape Set the stroke of ' to Set the stroke of all re'ctangles to black
Make the stroke of this Make the stroke of this red
Color stroke Color stroke green
Update stroke sizeof _____to___ Update stroke size of all rectangles to eight
. . Change the border thickness of to Change the border thickness of the rectangle to five
Border Size *width Shape K K K
Make stroke width Make stroke width eight
Set the border size of thisto Set the border size of this to five
Delete from the canvas Delete all drawn regions from the canvas
Delete Image tile, Region, Delete Delete all images
Shape Delete Delete
Delete this Delete this
Label *newLabel Ent%ty, Image tile, Set the lfibel to Set the lfxbel to sunny region
Region, Shape Label thisas Label this as Ross
Create a copy of Create a copy of the image
Copy copyCount Image tile, Shape Make copies of on the canvas Make two copies of all rectangles on the canvas
Create a copy Create a copy
Make copies Make six copies
Activate Tool *toolName Toolbar buttons Highlight the entities on the canvas Highlight the entities on the canvas

Activate the draw tool

fillColor, strokeColor,

Add a rectangle on the canvas

Add a rectangle on the canvas

Insert Shape Canvas image

strokeWidth

Add a rectangle with fill and stroke

Add a rectangle with fill red and stroke orange

Table 1: Supported operations in the prototype image editor along with parameters corresponding to each operation and target
objects individual operations can be performed on. An asterisk (*) signifies a parameter is for mandatory for an operation. A
sample set of phrasing templates and parameterized example commands are also shown.

extensively explored speech-based multimodal image editing inter-
faces, thus giving us a good initial set of features and interactions
to consider (21, 25, 27, 35].

4.1 User interface

Figure 1 shows the user interface of our prototype. At the top (Fig-
ure 1A) is a read-only text box that displays the spoken command.
Below that is a feedback region for showing system feedback for
spoken commands. To the left of the canvas is a toolbar (Figure 1B)
that allows users to select tools for drawing free-form regions (¢%),
rectangles (O), import additional images as tiles (Eal), and to high-
light labeled entities (e.g., person, car, dog—-as specified by the end
user or an object recognition system) (®). To the right of the canvas
is the properties panel (Figure 1D) that displays editing operations
for selected objects. Users can perform operations such as adding
or removing filters, changing fill and border colors, deleting objects
etc. Table 1 shows a full list of supported operations.

4.2 Triggering speech input

We employ a “push-to-talk” technique to let users issue spoken
commands and control when the system should start/stop listening.
To trigger listening users can long press (hold > one second) on
various locations in the interface: the input box, the talk button (29),
the canvas background image and objects (e.g., shapes, entities),
or the system panels (Figures 1B,D). The system listens as long as
the finger is touching the screen. The microphone icon in the input
box flashes red to indicate active listening ().

4.3 Interpreting speech input

Similarly to prior systems, we use a combination of a template and
lexicon-based parser to interpret speech [20, 27, 39]. Our prototype
identifies the operations, targets and parameters of the spoken
command by comparing the input to predefined templates. If the
input does not match a template, the system tokenizes the command

Discovering NL Commands in Multimodal Interfaces

Figure 1: Prototype system’s user interface. (A) Speech Input
and Feedback Row, (B) Toolbar, (C) Canvas, and (D) Object
Properties Panel. The pink circle shows the position of the
user’s finger. In this case, the user is pointing at the person
in the canvas image and has issued the command “Apply a
sepia filter”. In response, the system infers that the user is
referring to the lady in the image, creates a bounding box
around her and adds a sepia filter.

string and looks for specific keywords to infer the same information.
In cases where the spoken command does not contain a target, the
system infers the target through the interface state (e.g., which
objects were previously selected) or touch input (e.g., what object
was pointed at when the command was issued). Thus, touch is used
to specify (or disambiguate) portions of the spoken command.

4.4 Implementation

We implemented the prototype as a web application primarily
designed for tablet devices. To support entity labeling, we used
OpenCV [6] and an open-source implementation of the MobileNet
Single Shot Detector model trained on the COCO dataset [7, 28].
Through this, we detect entities and bounding boxes in the canvas
image. We used the HTML5 WebKit speech recognition API and
trained the recognizer with the system lexicon to improve detection
of relevant keywords (e.g., filter and color names).

5 DISPLAYING CONTEXTUAL COMMAND
SUGGESTIONS

After multiple design iterations and refinements, we selected three
designs and implemented them as three separate interfaces—the ex-
haustive interface, the adaptive interface, and the embedded interface.
All three help users discover commands in-situ but make different
trade-offs and represent distinct points in the design space of com-
mand suggestions to aid command awareness and understanding.
The exhaustive interface presents a list of all possible operations
and example commands for each operation (Figure 2). The adaptive
interface presents focused suggestions using contextual overlays
that appear next to the finger when users touch the canvas or parts
of the interface (Figure 3). Finally, the embedded interface presents
suggestions next to multiple GUI elements (Figure 4). By varying
when, where, and what example commands are displayed, the dif-
ferent interfaces explore ways to increase awareness of speech
commands and how they relate to interface elements.

1UI ’19, March 17-20, 2019, Marina del Rey, CA, USA

Examples of commands you can issue:

&2 Insert an image
&2 Add an image to the canvas

$ + 29 setlabel to
$ + 29 Label this as

[Raaecories]
&2 Apply a
&2 Add a heav
$ + 2 Applya
$ + 2 add

effect on the canvas

ght gray

sepia the person to light

blur all regions heavy
grayscale heavy
§ 2 morph filter medium
L blur
all cars

Figure 2: A list of commands suggested in the Exhaustive
Interface. In this case, commands for editing and removing
filters are faded out because the user has not applied any
filters yet.

5.1 Exhaustive interface

The exhaustive interface is modeled after traditional command
menus that list example commands for all operations [2, 11, 19, 24]
(see Figure 2).

When and where are suggestions presented?

Suggestions in this interface appear in a fixed position in the middle
of the screen. Users can tap the talk button (&) to see a list of all
system operations and example commands for each operation. To
aid readability, the examples are grouped by operation and users
can collapse/expand operation groups.

What is suggested?

Although the interface displays multiple phrasings for all avail-
able operations, prior work exploring discoverability solutions for
NLIs showed that contextualizing command suggestions aids dis-
coverability [11, 19, 46]. Thus, the exhaustive interface fades out
operations and commands that are not applicable to the active state
of the interface. For example, if there are no shapes on the canvas,
the commands for operations corresponding to shapes (e.g., fill
color, border size) are faded out.

5.2 Adaptive interface

The exhaustive interface helps users discover a breadth of com-
mands applicable to the active state of the interface. However, the
modal window displaying the list occludes the entire interface and
the long list of commands can be overwhelming. As an alternative,
we implemented the adaptive interface based on prior designs using
tooltips [12, 18, 22]. In our implementation we utilize tooltip-like
overlays to suggest commands relating to the current touch target
(see Figure 3). Because task-relevant suggestions are often more
useful [11, 29], the adaptive interface tunes its suggestions to help

IUI ’19, March 17-20, 2019, Marina del Rey, CA, USA

2% Say ...
Apply a sepia effect here

O,

23 Say ...
Apply a medium grayscale effect on the canvas

&) Say ...
Highlight entities in the image

Change fill color to gree

Make a copy
Label this as _
Delete this

Figure 3: Adaptive interface. Suggested examples when the
user touches (A) a person in the image, (B) the add filter drop-
down in the properties panel, and (C) the entity detection
button in the toolbar, (D) the talk button, and (E) a rectangle
on the canvas.

users discover commands in their (predicted) workflow (i.e., their
intended task).

When and where are suggestions presented?

To see command suggestions, users can long press on different
parts of the interface including the canvas (Figure 3A,E), widgets
and buttons in the properties panel and toolbar (Figure 3B,C), or
the talk button (Figure 3D). Suggestions are presented through
overlays next to the user’s finger. Command suggestions may be
specific to something directly under the user’s finger (e.g., shape
or image object) or may apply more generally to the interface. To
avoid occlusion by the hand, the overlays appear above the user’s
finger on the canvas and are positioned to the left or right of the
properties panel and the toolbar, respectively.

Srinivasan et al.

What is suggested?

Suggestions in this interface are contextual to the object under the
user’s finger. If the target is a widget, the suggestions are about
the widget. If the user is touching the canvas, the suggestion will
be about the object under the finger (e.g., background image, a
person, shape, etc). For instance, suggestions for applying filters
(e.g., “Apply a grayscale filter”) may appear when users long press
on the ‘add effect’ widget in the properties panel (Figure 3B) or on
an object in the image (Figure 3A).

The system suggests one example command per applicable op-
eration (Table 1). Command phrasings and parameter values vary
over time. For example, the user might first see “Apply a sepia effect
here” and later “Add a morph filter” To help users get accustomed
to using speech, the system initially suggests simpler phrasings
with fewer parameters and incrementally exposes users to more
complex phrasings with multiple parameters as the user starts
using the simpler phrasings. Figures 3A,B show this progression.
Both suggestions map to the add filter operation but Figure 3B dis-
plays an example with both filter name and filter strength (grayscale,
medium) whereas the example command in Figure 3A only includes
the filter name (sepia). Long pressing the talk button at the top (29)
shows suggestions of commands for the active canvas objects (e.g.,
shapes, background image, see Figure 3D).

In the adaptive interface, we experimented also with workflow-
based suggestions. Workflow here is defined as the set of opera-
tions through which a user accomplishes specific, repeated, tasks.
For example, if a user is transforming the image in Figure 3A to
the image in Figure 1, the workflow will include operations for
applying a grayscale filter on the image and applying a sepia filter
on both the person and the rock the person is resting on. If the
user is following a known workflow, the adaptive design restricts
the number of suggestions it presents and prioritizes commands
that align with the workflow. For instance, in Figure 3A, the system
suggests a single command to apply the sepia filter because that is
the next step in the predefined workflow. However, if no predefined
workflow is available, the system goes with the default strategy of
suggesting one command per applicable operation (Figure 3E).

Detecting whether a user is following a workflow automatically
is a challenging and interesting problem but is not the focus of
our work. Rather, we assume an underlying system that can make
this prediction (e.g., [1, 13, 44]). For our experiments, we manually
defined workflows for a number of source-target image pairs that
allowed us to implement and evaluate the adaptive interface.

5.3 Embedded interface

Although the adaptive interface makes suggestions more contextual,
it still uses overlays and thus occludes at least some part of the
canvas with its tooltip-like overlays. To avoid occlusion entirely,
the embedded interface ‘augments’ the GUI widgets with command
suggestions instead of presenting them on the canvas next to the
user’s finger (see Figure 4). This approach has the added benefit
of creating a visual mapping between GUI elements and speech
commands. Because the suggestions appear throughout the GUI
and incorporate the existing GUI labels, this interface presents
phrasing templates rather than examples and does not use workflow
information to select relevant suggestions.

Discovering NL Commands in Multimodal Interfaces

Border color:
|Black.

Border size:
1

Filter:
|Choose a Filter...

2) Say...

Set label to.

dog

hisz] D Cre

Change border color to ...
| Bladk

Change border size to ...
1

Add the filter ...

|Choose a Filt

Grayscale. Classic. Sepia. Blur, Morph

le filter on the canvas
ter on dog
Change the border size of dog to 10
Create a copy of dog
Remove dog

Figure 4: Embedded interface. (A) Commands suggested
when the user holds the toolbar. (B1) Default state of the
properties panel and (B2) Properties panel with embedded
commands displayed when the dog image tile is pressed. (C)
Commands suggested when the user holds the talk button.

When and where are suggestions presented?

To see suggestions, users can long press on different parts of the
interface at any time. Command suggestions appear alongside the
application GUI (Figure 4). For instance, if they long press on the
canvas, the system displays commands within the properties panel
(Figures 4B1,4B2). Blue text corresponding to speech commands
augments the GUI widgets in the properties panel. To incrementally
discover commands corresponding to the interface panels, users
can also directly long press on the toolbar (Figure 4A) or the prop-
erties panel (rather than pressing only on canvas objects). Long
pressing the talk button (&), displays both example commands
corresponding to objects on the canvas (Figure 4C) and also embeds
commands within the toolbar and properties panel.

What is suggested?

The embedded interface uses a combination of command templates
and examples as part of its suggestions. Because this design aug-
ments the existing GUI widgets, which present values, it has to use
templates instead of examples when suggesting commands in-situ.

1UI ’19, March 17-20, 2019, Marina del Rey, CA, USA

For instance, in Figure 4B2, the command template “Change border
color to ...” appears next to the dropdown menu for changing the
border color. To provide a consistent experience and give users
confidence in how to talk, the system displays the same template
throughout a session. Because the toolbar leaves little room to em-
bed text commands, suggestions for the tools in the toolbar use
command examples (not templates) similar to the adaptive interface.
The examples presented when the user touches the talk button at
the top (&) also follow the same approach as the adaptive interface.

6 GENERATING COMMAND SUGGESTIONS

We designed a single underlying approach to generate and rank
contextually relevant commands in the three interfaces. The method
provides an algorithmic scaffold for the described interfaces but can
also be employed by other multimodal systems to suggest natural
language commands.

Figure 5A provides an overview of our command suggestion
approach. Given a target object, the system selects a subset of
possible operations. Then, for each selected operation, the system
chooses one phrasing template and populates the selected template
with sample parameter values.

To select the subset of operations, the system considers object
and workflow relevance. The system first filters out any operations
that are not relevant to the target object (e.g., filters cannot be
applied to shape objects). In the adaptive interface, the system then
checks the predefined workflow to shortlist operations that are
relevant to the user task. For instance, if a workflow specifies that
the user needs to apply a filter on an image object, the system will
suggest only filter commands even though other operations such
as copy and delete may be applicable. Finally, the system ranks the
filtered subset of operations using two factors: the number of times
a speech command has been issued for an operation (issued-count)
and the number of times an operation has previously been covered
in the suggestions (shown-count). In our interfaces, we highly rank
suggested operations with low issued-count and low shown-count
to emphasize awareness of operations. That is, operations that are
performed infrequently are suggested leading to discoverability not
only of how to talk but also what is possible. An alternative might be
to focus on high issued-count and high shown-count operations and
display different phrasings. This approach emphasizes the learning
of command variants for frequently used operations.

For each shortlisted operation, the system selects a phrasing
from a set of phrasing templates (see examples in Table 1). The
system ranks phrasing templates using input type, complexity,
issued-count, and shown-count. Input type refers to whether the
suggestions were invoked by touching on an object or the interface.
When the touch target is a canvas object, phrasings with deictic ref-
erences are ranked higher [33, 34]. Figure 5B shows the generation
of a deictic phrasing template. The system picks the template “Color
this_____ because the suggestion generation was invoked when
the user pointed at a rectangle (the input type). Complexity, in our
model refers to the number of parameters a template contains (e.g.,
complexity of “Apply sepia effect” is one whereas “Apply heavy sepia
effect” is two.) The system ranks templates with lowest complexity
highest at first. As users start using low complexity phrasings, the
system increases the complexity of the highest ranked template.

IUI ’19, March 17-20, 2019, Marina del Rey, CA, USA

Available Operation Phrasing
Operations Selection Templates
Target Type
Workflow
Relevance

Issued count

Shown count

- Set fill color of to
Al Ezler Change fill of to
Color this

Set fill color to

Srinivasan et al.

Template Template Examples
Selection Parameterization P

Input Type

Issued count

Shown count @

—— Color this

Workflow
Relevance

Complexity

Used only in
adaptive interface

Target State

————— “Color this blue”

= blue

Figure 5: (A) Overview of the command suggestion approach and (B) Example execution for Fill Color when the user points to

a shape.

Whenever an operation is performed twice, the system increases
the complexity of the selected phrasing by one. Thus, users are in-
crementally exposed to complex spoken commands as they learn to
perform operations. The issued-count and shown-count factors are
as described above, and specifically refer to use through speech and
presentation as a suggestion. In the implementation for all three
interfaces the system ranks phrasings with low issued-count (use)
and low shown-count (presentations) higher in order to expose
users to a wider range of phrasings.

As a final step, the system parameterizes the selected phrasing
template to generate an example command. When the system is
aware of the user’s task, it will select parameters that are workflow-
oriented. Otherwise, it selects parameter values that are different
from the target’s current values. For instance, in Figure 5B, the
suggested fill command when touching the green rectangle would
include colors other than green.

6.1 Failure inference

Early pilot studies with the system showed us that command sug-
gestions alone were not sufficient, because users looked to error
messages to understand why their command did not work. This
led us to develop a feedback mechanism that incorporates sugges-
tions. In all three interfaces, the feedback region below the text box
(Figure 1A) also suggests example commands as part of feedback
to the user. To suggest examples in this context, the system infers
the cause of command failure using heuristics and classifies each
failure as a phrasing error, a parameter error, an operation-object
mapping error, or an operation recognition error. Phrasing errors
are identified as commands that contain a valid parameter but are
inconsistent with the grammar or lack keywords (e.g., “Make sepia”).
In such cases, the system suggests an example command using that
parameter value (e.g., “Add a sepia filter”). A parameter error is de-
termined if there is a valid operation but a missing or unsupported
parameter value (e.g., “Change fill color” or “Add the retro filter”).
For this, the feedback indicates that the command is incomplete and
displays a list of supported values with an example (e.g., “Change
fill color to green”). A third error type, operation-object mapping
error, is when the system infers both operation and parameters but
the command is targeted on an unsupported object (e.g., saying

“Apply a morph filter” while pointing on a rectangle). In this case,
the feedback lists the applicable object types (i.e., images in this
example above). Finally, if the system is neither able to infer the
operation nor the parameter in a command (e.g., “undo”~which
was not implemented in our prototype) the system counts this as
an operation recognition error and indicates to the user that they
should try one of the offered examples.

6.2 Generalizability of the approach

We have presented the command suggestion approach (Figure 5A)
in the context of our prototype system. However, the approach itself
is not specific to image editing tools and can be used by other mul-
timodal systems to enhance speech discoverability. To implement
suggestions we primarily rely on mappings between operations and
objects (Table 1) and ranking factors (listed in Figure 5A). Most mul-
timodal systems inherently define mappings between operations
and targets. A text editor, for example, might allow operations such
as changing the font size or color on sentences, paragraphs, etc. (the
target objects). The factors used to select operations and phrasings
are also generalizable. For example, we might change ranking to
reinforce learning by suggesting commands that have been issued
before rather than novel examples. The only required change would
be modifying the ranking to prefer high issued-counts. Likewise, to
suggest complex examples instead of simpler ones, ranking weights
can be modified to prefer higher complexity (e.g., commands with
more parameters) when selecting phrasing templates.

7 PRELIMINARY USER STUDY

We conducted a preliminary user study to assess if the command
suggestions helped users discover and use speech commands. The
study also helped us understand if there were preferences between
the three interfaces. We followed a between-subjects design and
ran the study on UserTesting [42], an online platform commonly
used for testing web and mobile applications. Deploying an online
study allowed us to evaluate how the designs would work ‘in the
wild” where people use their own computers and receive minimal
training. UserTesting participants are walked through a step-by-
step guided experience with questions and prompts to use a website

Discovering NL Commands in Multimodal Interfaces

or interface. Throughout the process participants follow a think-
aloud study methodology, and both audio and screen captured video
are recorded through the UserTesting platform. All sessions are
shared as video recordings.

7.1 Participants and setup

After piloting, we posted three individual studies requesting eight
participants for each condition (Exhaustive: X1-X8, Adaptive: A1-
A8, Embedded: E1-E8). The participants were paid $10 for each
session. To qualify, participants had to 1) be native English speak-
ers, 2) use a Microsoft Surface Pro tablet without an external key-
board, mouse, or stylus, and 3) run the study on the Google Chrome
browser. We did not require any prior experience with image editing
tools or speech systems.

Of the 24 sessions, we discarded 7 (2 exhaustive, 3 adaptive, 2
embedded) where we witnessed hardware problems (e.g., speech
or touch not working) or when the participants did not follow the
study instructions (e.g., used a mouse, did not attempt all tasks). We
report our results based on the 17 completed sessions (6 exhaustive,
5 adaptive, 6 embedded). The 17 participants (4 males, 13 females)
were 19-48 years old. Seven participants self-identified as novices
with photo-editing tools (Exhaustive: 1, Adaptive: 4, Embedded:
2), eight as intermediate (Exhaustive: 4, Embedded: 4), and two
rated themselves as experts (Exhaustive: 1, Adaptive: 1). Of the 17,
three participants self-identified as novices with speech interfaces
(Adaptive: 2, Embedded: 1), four self-identified as intermediate (Ex-
haustive: 3, Embedded: 1), and ten indicated high comfort with
speech interfaces and regular use (Exhaustive: 3, Adaptive: 3, Em-
bedded: 4).

7.2 Procedure

Study sessions lasted 22-48 minutes (32 minute mean and median).
Each began with a questionnaire asking participants about their
level of experience with photo editing tools (e.g., Photoshop) and
speech interfaces (e.g., Siri, Alexa). Participants then watched two
training videos (~ 4 min). The first video was common across the
three designs and gave a general overview of the system, show-
ing participants the different interface components and tools. The
second video was design specific and showed participants how to
talk to the application and invoke the command suggestions. Par-
ticipants watched the videos in sequence and could not proceed
until they watched both videos completely. The participants were
then asked to complete three ‘before-after’ image editing tasks that
required editing a source image (the ‘before’) to look as similar as
possible to the target (the ‘after’). The participants were asked to
think aloud as they worked and did not receive time constraints. Af-
ter completing the three tasks, participants answered a post-session
questionnaire asking about their experience with the tool, their
perceptions of the suggestions, and any additional feedback.

We analyzed the video recordings for each session, taking notes
on participant behavior and manually curated all spoken commands
for further success/failure analysis.

7.3 Results

The study resulted in a total of 834 spoken commands with an
average of 49 spoken commands per participant across conditions.

1UI ’19, March 17-20, 2019, Marina del Rey, CA, USA

We did not have enough data to assess statistical significance, but
we found that participants in the exhaustive condition used fewer
commands (mean: 35, median: 37, median absolute deviation, or
MAD: 16) than in the adaptive (mean: 52, median: 64, MAD: 19) and
embedded (mean: 61, median: 50, MAD: 21) conditions indicating
that the proposed overlay and augmentation-based suggestions
may encourage participants to talk more.

Out of the 834 commands, 44% (369/834) failed. Among these,
39% (144/369) were speech-to-text transcription errors, 16% (59/369)
were commands that got recorded while participants were thinking
aloud, 10% (36/369) were cases where participants did not record
the entire command before lifting their finger from the screen, 18%
(65/369) were phrasing errors, 7% (28/369) were operation-object
mapping errors, 5% (19/369) were operation recognition errors, and
the remaining 5% (18/369) were parameter errors. In total, 35%
(130/369) of the errors were connected to discoverability of what
to say and how to say it. The high number of speech-to-text errors
show that transcription remains one of the major obstacles for
speech interfaces [31]. However, the relatively lower number of
phrasing, parameter, operation-mapping, and operation recognition
errors suggest that the interfaces helped participants learn what
they could say. In fact, despite the high number of speech-to-text
errors, 13/17 participants (exhaustive: 4/6, adaptive:5/5, embedded:
4/6) said that the suggestions helped them learn how to talk to
the system and 10/17 participants (exhaustive: 3/6, adaptive:4/5,
embedded: 3/6) said that the suggestions encouraged them to talk.
For instance, A5 said, “when I push on something it said say this and
so instead of like trying to scroll through or do something else I just said
what it told me to say” Explaining the importance of suggestions
in addition to onboarding videos, X2 said “it’s absolutely critical to
have that cheat sheet there. Maybe I didn’t pay as much attention as I
should have to the videos ... but there’s your average user. You're not
going to have their complete attention anyway even if they watch the
tutorial videos”

The command success rate across designs was comparable with
average command success rate per session in the high 70s% (ex-
haustive=77%, adaptive=77%, embedded=79%). This is particularly
encouraging for the adaptive and embedded interface where the
participants tended to speak more. For this analysis, we exclude
speech-to-text errors, conflicts with the think-aloud protocol, and
errors from lifting the finger before completing a command, because
they affected all conditions.

Varying distribution of deictic speech commands

Deictic commands (e.g., “make this green”, “add a morph filter here”)
are common in multimodal systems. However, users can also point
at objects and say a command without including a deictic word
(e.g., saying “Make fill blue” while pointing on a shape). Since these
are not strictly deictic commands, we refer to both commands that
include deictic references and non-deictic commands issued while
pointing at a specific object as deictic++ commands. We expected to
see most deictic++ commands in the adaptive interface because sug-
gestions appear next to the user’s finger. The logs confirm this to be
the case. In the adaptive interface, deictic++ commands accounted
for 74% of successful commands. In the exhaustive interface deic-
tic++ commands accounted for 69% of successful commands. And

IUI ’19, March 17-20, 2019, Marina del Rey, CA, USA

in the embedded interface they composed 43% of successful com-
mands. The low number of deictic++ commands in the embedded
interface was a surprise. We think this low number may be due
to three factors. First, users of the embedded interface saw very
few deictic examples. Since this interface was designed for fewer
examples with consistent phrasing and the commands had to be
embedded next to the GUI widgets constraining the types of exam-
ples that could be shown. Second, participants may have missed
some of the suggestions in the panel because they were focused
on editing the image and the suggestions were on the side. Finally,
the dense nature of embedded suggestions may make them difficult
to read. E2 was looking for a command to change the border size
of a rectangle and invoked the panel suggestions to see potential
commands. However, since the command was surrounded by other
UI widgets and commands, she did not see the suggestion corre-
sponding to the border size operation and invoked the suggestions
multiple times.

Using failure feedback for discovery

All participants used the examples shown in the feedback interface
at least once. Some participants used the feedback itself as a dis-
covery mechanism. For instance, one participant (X5) tried using
the feedback as a command search mechanism. After noticing that
the system gave examples in the feedback interface, she started
issuing single word commands such as “copy” and “border” to see
the commands suggested by the system. The feedback example
commands seemed most effective when they were linguistically
similar to the failed input command or used the same parameter val-
ues. For example, when X2 uttered an ill-phrased command to color
a rectangle blue, the feedback suggested the command “Set the fill
color to blue” Reading this the participant said “Thank you!” and re-
uttered the command, almost as if it was a dialog between him and
the system. The frequent use of system feedback coupled with such
behavior highlights the value in exploring feedback techniques for
command discovery. Potential avenues include presenting confir-
matory questions or explanatory messages to assist error recovery
and command discoverability [4, 38].

Suggestions do not overcome lack of domain knowledge
Even participants who used many speech commands would revert
to using only touch whenever they were unsure of terminology. For
example, applying filters requires knowing the names of the filters.
Some participants did not know which filter names corresponded
to which types of visual changes. So while exploring, they used
the drop down menu and tried out different filters using touch
rather than giving speech commands. More experienced partici-
pants switched back to using speech after learning the available
filters while novice participants continued to use the drop down
menu. The lack of a visual preview hindered exploration and learn-
ing, in particular around tools that have names that are hard to
interpret. How to support this kind of exploration with speech
interfaces remains an open question.

Challenges in generalizing example commands

While most participants realized that the suggested commands
were only examples and they could modify parameter values when
issuing commands, some were initially confused and thought the

Srinivasan et al.

examples were recommendations of things they must say. For exam-
ple, E4 read out all of the system suggestions leading to her uttering
a total of 147 commands compared to an average of 43 commands
per session across the remaining 16 participants. Describing her
actions, she said “honestly I'm just doing whatever this directs me to
do. It’s really difficult for me to know what to say here.” indicating
that she interpreted the command examples as required next steps.
While the directed nature of the study protocol and UserTesting
platform may have exacerbated this confusion, a potential risk for
future systems to consider is that users may confuse contextual
examples (i.e., what is possible at a given instant) with system
recommendations (i.e., what to do next).

No single design fits all

To become more aware of available commands and learn supported
phrasings, different people need different types of suggestions. For
instance, the participant in the embedded condition (E4) who kept
parroting the suggested commands without realizing they were
only examples would have benefited from the workflow-based sug-
gestions of the adaptive interface. On the other hand, one of the
participants in the adaptive condition (A5) often had to invoke over-
lay windows for specific widgets in the properties panel because the
suggestions she saw on the canvas did not always show commands
for the styling operations she wanted to perform. For such partic-
ipants, it may be useful to have suggestions both as a contextual
overlay next to the finger and embedded in the properties panel.
Hence, while we separated the three designs for the purpose of the
study, in the future it may be worthwhile to explore how strategies
from the different designs can be combined.

8 LIMITATIONS AND FUTURE WORK

The preliminary user study helped us collect valuable feedback. An
important next step is completing a formal statistical evaluation
comparing the different designs using a larger pool of participants.
A more formal study would help validate our current findings and
gain a deeper understanding of the effects of the interface fea-
tures on task performance and learning. Additionally, applying this
approach to a more complex application with more tools and oper-
ations will invariably help us understand how to balance breadth
of examples with GUI-widget-to-speech-command mappings.

An inherent limitation with the approach of suggesting com-
mands is that the suggestions may give users a false sense of the
system’s interpretation capabilities. In other words, users may think
that the system can only understand commands if they are phrased
exactly as they are in the suggestions. While users following sug-
gested phrasings may have a positive impact on system perfor-
mance, it can also limit what users might try to accomplish with a
system. Hence, another potential area for improvement is to explore
more automated techniques to generate a broader set of phrasing
templates that cover a wider range of system capabilities.

In our current implementation, the command suggestions cover
variation in phrasings, parameters, and complexity. However, there
are classes of commands that we do not support in our current work
including follow-up commands and speech+gesture commands.
Similar to deictic commands, follow-up commands have different
linguistic phrasings (e.g., “Set fill to blue” > “Now green”). Supporting

Discovering NL Commands in Multimodal Interfaces

follow-up commands requires keeping track of previously executed
operations. And while it may be straightforward to add support
for discoverability of simple follow-up commands like “now green,”
it is less clear how to support follow-up commands that combine
multiple previous operations (e.g., “do this again 4 times”) where
this may refer to multiple operations like changing a border, fill,
and resizing. Another class of commands we have yet to explore
are speech+gesture commands. For example, as a user drags the
corner of rectangle, a system can support snapping with speech
commands. Or, as shown by Laput et al. [27], users can say “blur in
this direction” while performing a gesture to indicate the direction
of the blur. An open area for future work is helping users discover
these classes of commands through examples.

9 CONCLUSION

In this work we explored alternative designs for enhancing discover-
ability of speech commands in multimodal interfaces. We described
a framework to generate and rank command examples and used
it to implement three variants of a prototypical touch+speech im-
age editor: exhaustive, adaptive, and embedded. Based on an online
user study emulating ‘in the wild’ system usage, we described how
contextual command suggestions promoted discovery in all inter-
faces and encouraged the use of speech input. We found that users
uttered more deictic commands in the adaptive interface and that
system feedback could be used to enhance discovery and mitigate
challenges participants had in generalizing from examples. Our
framework for deciding how, when and which suggestions to show
generalizes beyond photo editing tools and can be adapted to en-
hance discoverability of natural language commands in a variety
of multimodal interfaces.

10 ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and our study
participants for their time and helpful feedback. We also thank
Celso Gomes for his feedback on the prototype and help in setting
up the study.

REFERENCES

[1] Eytan Adar, Mira Dontcheva, and Gierad Laput. 2014. CommandSpace: Modeling

the Relationships Between Tasks, Descriptions and Features. In Proceedings of the

27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14).

ACM, New York, NY, USA, 167-176. https://doi.org/10.1145/2642918.2647395

] Apple Siri 2018. https://www.apple.com/siri/.

[3] David Benyon. 1993. Adaptive systems: a solution to usability problems. User
modeling and User-adapted Interaction 3, 1 (1993), 65-87.

[4] Dan Bohus and Alexander I. Rudnicky. 2008. Sorry, I Didn’t Catch That! Springer
Netherlands, Dordrecht, 123-154. https://doi.org/10.1007/978-1-4020-6821-8_6

[5] Richard A Bolt. 1980. “Put-that-there”: Voice and gesture at the graphics interface.
Vol. 14. ACM.

[6] Gary Bradski and Adrian Kaehler. 2000. OpenCV. Dr. Dobb’s journal of software
tools 3 (2000).

[7] Caffe implementation of Google MobileNet SSD detection network 2018. https:
//github.com/chuanqi305/MobileNet-SSD.

[8] Paul Chandler and John Sweller. 1992. The split-attention effect as a factor in

the design of instruction. British Journal of Educational Psychology 62, 2 (1992),

233-246.

Pei-Yu (Peggy) Chi, Daniel Vogel, Mira Dontcheva, Wilmot Li, and Bjérn Hart-

mann. 2016. Authoring Illustrations of Human Movements by Iterative Physi-

cal Demonstration. In Proceedings of the 29th Annual Symposium on User Inter-

face Software and Technology (UIST ’16). ACM, New York, NY, USA, 809-820.

https://doi.org/10.1145/2984511.2984559

[10] P.R. Cohen, M. Dalrymple, D. B. Moran, F. C. Pereira, and J. W. Sullivan. 1989.

Synergistic Use of Direct Manipulation and Natural Language. In Proceedings of

=
22

[11

[12

[14

[15

[16

(17]

(18]

[19

[20

)
=

[22]

[23

[24

[25

[26

[27]

(28]

[29

[30

[31

1UI ’19, March 17-20, 2019, Marina del Rey, CA, USA

the SIGCHI Conference on Human Factors in Computing Systems (CHI ’89). ACM,
New York, NY, USA, 227-233. https://doi.org/10.1145/67449.67494

Eric Corbett and Astrid Weber. 2016. What Can I Say?: Addressing User Experi-
ence Challenges of a Mobile Voice User Interface for Accessibility. In Proceedings
of the 18th International Conference on Human-Computer Interaction with Mo-
bile Devices and Services (MobileHCI ’16). ACM, New York, NY, USA, 72-82.
https://doi.org/10.1145/2935334.2935386

Yibo Dai, George Karalis, Saba Kawas, and Chris Olsen. 2015. Tipper: contextual
tooltips that provide seniors with clear, reliable help for web tasks. In Proceedings
of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems. ACM, 1773-1778.

Himel Dev and Zhicheng Liu. 2017. Identifying Frequent User Tasks from
Application Logs. In Proceedings of the 22nd International Conference on In-
telligent User Interfaces (IUI ’17). ACM, New York, NY, USA, 263-273. https:
//doi.org/10.1145/3025171.3025184

Jinjuan Feng, Clare-Marie Karat, and Andrew Sears. 2004. How productivity
improves in hands-free continuous dictation tasks: lessons learned from a longi-
tudinal study. Interacting with computers 17, 3 (2004), 265-289.

Leah Findlater and Krzysztof Z Gajos. 2009. Design space and evaluation chal-
lenges of adaptive graphical user interfaces. AI Magazine 30, 4 (2009), 68.

Leah Findlater and Joanna McGrenere. 2004. A comparison of static, adaptive,
and adaptable menus. In Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, 89-96.

James Fogarty, Scott E Hudson, Christopher G Atkeson, Daniel Avrahami, Jodi
Forlizzi, Sara Kiesler, Johnny C Lee, and Jie Yang. 2005. Predicting human
interruptibility with sensors. ACM Transactions on Computer-Human Interaction
(TOCHI) 12, 1 (2005), 119-146.

Adam Fourney, Ben Lafreniere, Parmit Chilana, and Michael Terry. 2014. Inter-
Twine: creating interapplication information scent to support coordinated use
of software. In Proceedings of the 27th annual ACM symposium on User interface
software and technology. ACM, 429-438.

Anushay Furgan, Chelsea Myers, and Jichen Zhu. 2017. Learnability Through
Adaptive Discovery Tools in Voice User Interfaces. In Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI
EA ’17). ACM, New York, NY, USA, 1617-1623. https://doi.org/10.1145/3027063.
3053166

Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Karahalios.
2015. DataTone: Managing Ambiguity in Natural Language Interfaces for Data
Visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology (UIST ’15). ACM, New York, NY, USA, 489-500. https:
//doi.org/10.1145/2807442.2807478

Arno PJ Gourdol, Laurence Nigay, Daniel Salber, Joélle Coutaz, et al. 1992. Two
Case Studies of Software Architecture for Multimodal Interactive Systems: Voice-
Paint and a Voice-enabled Graphical Notebook. Engineering for Human-Computer
Interaction 92 (1992), 271-84.

Tovi Grossman and George Fitzmaurice. 2010. ToolClips: an investigation of
contextual video assistance for functionality understanding. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 1515-1524.
Tovi Grossman, George Fitzmaurice, and Ramtin Attar. 2009. A Survey of Software
Learnability: Metrics, Methodologies and Guidelines. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI "09). ACM, New York,
NY, USA, 649-658. https://doi.org/10.1145/1518701.1518803

Susumu Harada, Jacob O Wobbrock, and James A Landay. 2007. Voicedraw: a
hands-free voice-driven drawing application for people with motor impairments.
In Proceedings of the 9th international ACM SIGACCESS conference on Computers
and accessibility. ACM, 27-34.

Alexander G Hauptmann. 1989. Speech and gestures for graphic image manipu-
lation. ACM SIGCHI Bulletin 20, SI (1989), 241-245.

Laurent Karsenty. 2002. Shifting the design philosophy of spoken natural lan-
guage dialogue: From invisible to transparent systems. International Journal of
Speech Technology 5, 2 (2002), 147-157.

Gierad P Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem Agar-
wala, Jason Linder, and Eytan Adar. 2013. Pixeltone: A multimodal interface
for image editing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2185-2194.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740-755.
Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. 2009. Com-
munityCommands: command recommendations for software applications. In
Proceedings of the 22nd annual ACM symposium on User interface software and
technology. ACM, 193-202.

Jeffrey Mitchell and Ben Shneiderman. 1989. Dynamic versus static menus: an
exploratory comparison. ACM SigCHI Bulletin 20, 4 (1989), 33-37.

Chelsea Myers, Anushay Furqan, Jessica Nebolsky, Karina Caro, and Jichen Zhu.
2018. Patterns for How Users Overcome Obstacles in Voice User Interfaces. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, 6.

https://doi.org/10.1145/2642918.2647395
https://www.apple.com/siri/
https://doi.org/10.1007/978-1-4020-6821-8_6
https://github.com/chuanqi305/MobileNet-SSD
https://github.com/chuanqi305/MobileNet-SSD
https://doi.org/10.1145/2984511.2984559
https://doi.org/10.1145/67449.67494
https://doi.org/10.1145/2935334.2935386
https://doi.org/10.1145/3025171.3025184
https://doi.org/10.1145/3025171.3025184
https://doi.org/10.1145/3027063.3053166
https://doi.org/10.1145/3027063.3053166
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/1518701.1518803

19]]

[32]

[33]

[34]

[35]

[36]

[37]

[38

[39]

[40

[41]

[42
[43]

[44]

[45]

[46

[47]

[48]

’19, March 17-20, 2019, Marina del Rey, CA, USA

Sharon Oviatt. 1997. Multimodal interactive maps: Designing for human perfor-
mance. Human-computer interaction 12, 1 (1997), 93-129.

Sharon Oviatt. 1999. Ten myths of multimodal interaction. Commun. ACM 42,
11 (1999), 74-81.

Sharon Oviatt, Antonella DeAngeli, and Karen Kuhn. 1997. Integration and syn-
chronization of input modes during multimodal human-computer interaction. In
Referring Phenomena in a Multimedia Context and their Computational Treatment.
Association for Computational Linguistics, 1-13.

Randy Pausch and James H. Leatherby. 1991. An Empirical Study: Adding Voice
Input to a Graphical Editor. Journal of the American Voice Input/Output Society 9
(1991), 2-55.

Tim F. Paymans, Jasper Lindenberg, and Mark Neerincx. 2004. Usability Trade-
offs for Adaptive User Interfaces: Ease of Use and Learnability. In Proceedings of
the 9th International Conference on Intelligent User Interfaces (IUI 04). ACM, New
York, NY, USA, 301-303. https://doi.org/10.1145/964442.964512

Ben Shneiderman and Pattie Maes. 1997. Direct manipulation vs. interface agents.
interactions 4, 6 (1997), 42-61.

Gabriel Skantze. 2005. Exploring human error recovery strategies: Implications
for spoken dialogue systems. Speech Communication 45, 3 (2005), 325-341.
Arjun Srinivasan and John Stasko. 2018. Orko: Facilitating multimodal interaction
for visual exploration and analysis of networks. IEEE transactions on visualization
and computer graphics 24, 1 (2018), 511-521.

Keith Taylor. 1990. IBM systems application architecture: common user access
from first principles. Computing & Control Engineering Journal 1, 3 (1990), 123—
127.

Theophanis Tsandilas et al. 2005. An empirical assessment of adaptation tech-
niques. In CHI'05 Extended Abstracts on Human Factors in Computing Systems.
ACM, 2009-2012.

UserTesting.com, Inc. 2018. https://www.usertesting.com/.

Marilyn A. Walker, Jeanne Fromer, Giuseppe Di Fabbrizio, Craig Mestel, and
Don Hindle. 1998. What Can I Say?: Evaluating a Spoken Language Interface to
Email. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI *98). ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 582-589. https://doi.org/10.1145/274644.274722

Xu Wang, Benjamin Lafreniere, and Tovi Grossman. 2018. Leveraging
Community-Generated Videos and Command Logs to Classify and Recommend
Software Workflows. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (CHI '18). ACM, New York, NY, USA, Article 285, 13 pages.
https://doi.org/10.1145/3173574.3173859

Jun Xiao, Richard Catrambone, and John Stasko. 2003. Be quiet? evaluating
proactive and reactive user interface assistants. In Proceedings of INTERACT,
Vol. 3. 383-390.

Nicole Yankelovich. 1996. How do users know what to say? interactions 3, 6
(1996), 32-43.

Yu Zhong, T. V. Raman, Casey Burkhardt, Fadi Biadsy, and Jeffrey P. Bigham.
2014. JustSpeak: Enabling Universal Voice Control on Android. In Proceedings of
the 11th Web for All Conference (W4A °14). ACM, New York, NY, USA, Article 36,
4 pages. https://doi.org/10.1145/2596695.2596720

S. Zolaktaf and G. C. Murphy. 2015. What to Learn Next: Recommending
Commands in a Feature-Rich Environment. In 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA). 1038-1044. https:
//doi.org/10.1109/ICMLA.2015.55

Srinivasan et al.

https://doi.org/10.1145/964442.964512
https://www.usertesting.com/
https://doi.org/10.1145/274644.274722
https://doi.org/10.1145/3173574.3173859
https://doi.org/10.1145/2596695.2596720
https://doi.org/10.1109/ICMLA.2015.55
https://doi.org/10.1109/ICMLA.2015.55

	Abstract
	1 Introduction
	2 Related Work
	3 Design Space
	3.1 When to show command suggestions?
	3.2 What commands to suggest?
	3.3 Where to display suggestions?

	4 Example Application: Image Editor
	4.1 User interface
	4.2 Triggering speech input
	4.3 Interpreting speech input
	4.4 Implementation

	5 Displaying Contextual Command Suggestions
	5.1 Exhaustive interface
	5.2 Adaptive interface
	5.3 Embedded interface

	6 Generating Command Suggestions
	6.1 Failure inference
	6.2 Generalizability of the approach

	7 Preliminary User Study
	7.1 Participants and setup
	7.2 Procedure
	7.3 Results

	8 Limitations and Future Work
	9 Conclusion
	10 Acknowledgements
	References

