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Abstract

Interactive visual analytics is an effective approach for
the timely analysis of data. Users who are already en-
gaged in interactive data analysis prefer staying in the
visualization environment for unavoidable data clean-
ing and preparation tasks to preserve their analytic
flow. This has led visualization environments to in-
clude simple data preparation functions such as scalar
parsing, pattern matching and categorical binning. One
common scalar parsing task is extracting date and time
data from string representations. Several relational
database management systems (RDBMSs) include date
parsing “mini-languages” to cover the wide range of
possible formats, but analysis of user data from one
visualization system shows that the parsing language
syntax can be difficult for users to master.

In this paper, we present two algorithms for auto-
matically deriving date formats from a column of data
with minimal user disruption, one based on minimal
entropy representations and another based on natural
language processing techniques. Both have accuracies
of over 95% on a large corpus of date columns extracted
from an online data repository. One of the methods is
also fast enough to produce results within the user’s
perceptual threshold. Moreover, we were able to avoid
prohibitively expensive manual verification by using the
algorithms to cross-check each other at scale.

1 Introduction

In recent years, there has been growing interest in
data visualization technologies for human-assisted data
analysis using systems such as Polaris [24] and Spot-
fire [6]. While computers can provide high-speed and
high-volume data processing, humans have both the
domain knowledge and the ability to process data in
parallel by using their visual systems [8, 19]. Systems
that rely on both the processing capability of computer
systems and human feedback, are more effective in ex-
tracting useful knowledge from the large amounts of
data being generated than either by itself.

1.1 Interactivity

Visualization systems are most effective when they are
interactive, thereby allowing a user to explore data
and connect it to their domain knowledge and sense
of what is important without breaking cognitive flow.
Exploration of data consists not only in creating visu-
alizations, but also in creating and modifying domain-
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specific computations in the data model. During the
analytic process, a user may discover that parts of the
data are not yet suitable for analysis.

Preparing this data for analysis often requires data
preparation tools external to the visual analysis envi-
ronment, which forces the user to break their cognitive
flow, launch another tool and reprocess her data be-
fore returning to her analysis. Recent work [21] found
that the most effective systems allow users to define
these calculations as part of the analytic interaction,
enabling the user to stay in the flow of analysis.

We have observed that one of the most common such
data preparation tasks users perform is parsing date
strings into scalar date representations. Examination
of author calculations in a public repository using our
visualization system showed that there are about as
many workbooks containing date parsing calculations
(3.3%) as there are integer type conversions of any kind
(3.4%). Streamlining this task is the focus of this paper.

1.2 Scalar Dates

The SQL-99 standard defines three temporal scalar
types: DATE, TIMESTAMP and TIME, which can be
further qualified as either WITH or WITHOUT TIME ZONE

(the WITHOUT form being more common.) These types
are typically implemented as fixed-point offsets from
some epoch (e.g., Julian Days.) This makes them com-
pact to store using columnar compression techniques
such as those in C-Store [25] and MonetDB/X100 [27],
and further allows some temporal operations to be
implemented efficiently using simple arithmetic. Thus
from the RDBMS perspective, representing dates in
scalar form provides benefits for users, both in terms
of analytic richness and query performance.

From an analytic perspective, date types are dimen-
sional (i.e. independent variables) and can be used as
either categorical (simply ordered) or quantitative (or-
dered with a distance metric) fields. Categorical dates
have a natural hierarchy associated with them gener-
ated by calendar binning, which is much easier to spec-
ify and compute with a scalar representation. Figure
1 shows an example of binned categorical dates in a
year/quarter hierarchy using a bar chart.

Quantitative dates are typically used for time series
on an axis that maps the underlying distance measure
to display pixel distance. Figure 2 shows the same sales
data in a quantitative time series rolled up to the quar-
ter level.

Both of these examples are much easier for users to
specify and manipulate when the data is modeled by
scalar dates.
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Figure 1: Categorical Date Scalars.
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Figure 2: Quantitative Date Scalars.

1.3 Parsing Dates

A common form of the date parsing problem is con-
verting columns of integers in the form yyyyMMdd to
date scalars. Näıve users often solve this problem by
converting the integer to a string and performing some
locale-dependent string operations before casting the
string back to a date, but this approach has a number
of drawbacks. String operations are notoriously slow
compared to scalar operations (typically 10-100x slower
in modern RDBMSs). Default parsing of date formats
is locale-dependent, and may not work when the pars-
ing expression is shared across an international orga-
nization (e.g., between the US and European offices).
Such ad hoc parsing code is often hard to understand
and maintain because it uses a verbose, general-purpose
string-handling syntax instead of a specialized domain
language.

In Section 5 we show that there are hundreds of dis-
tinct temporal date formats in user data sets (Figure 3).
Some are common, but others can be quite idiosyn-
cratic. Table 1 shows a selection of unusual date for-
mats found in our corpus (the meanings of the ICU
formatting codes can be found in Table 2). The first
example shows a time zone in the middle of the date
and a year after the time; the second shows a leading
unmatched bracket and a colon between the date and
time components; the third shows confusion between
the seconds’ decimal point and the time part delim-
iter; the fourth shows a two digit year apostrophe on
a four digit year and the fifth shows a dash separating
the date and time components. This “long tail” of for-

mats means that these idiosyncrasies are the rule, not
the exception, so a small, fixed set of formats will not
produce high reliability.

ICU Format Example

EEE MMM dd HH:mm:ss
zzz yyyy

Fri Apr 01 02:09:27 EDT
2011

[dd/MMM/yyyy:HH:mm:ss [10/Aug/2014:09:30:40

dd-MMM-yy
hh.mm.ss.SSSSSS a

01-OCT-13 01.09.00.000000
PM

MM ”yyyy 01 ’2013

MM/dd/yyyy - HH:mm 04/09/2014 - 23:47

Table 1: Unusual Date Formats.

Several RDBMSs (e.g., MySQL, Oracle and Post-
gres) provide row-level functions for parsing formatted
dates, but a simple review of user attempts to use this
functionality in published analyses showed a 15% syn-
tax error rate when using these functions unassisted.
Even with perfect syntax, the user still has to interrupt
her flow to learn a formatting syntax – one that she will
likely forget after this specific problem has been solved.

One approach might have been to design a graphical
environment for constructing valid patterns and using
visually compelling representations to reduce the cog-
nitive load. However, this approach provides no guar-
antee that the result would be correct if the user mis-
understood the environment. Moreover, it only solves
the syntax problem – the user is still required to switch
contexts.

Our solution was to develop two algorithms for au-
tomatically deriving the format string from the user’s
data with over 95% parsing accuracy. Both algorithms
are built based on classical machine learning algorithms
that learn from pattern recognition to make data-driven
predictions. We developed two algorithms because we
were unaware of any previous work on this problem and
we needed to be able to cross-validate our results on a
large test corpus. With both approaches, the user can
simply specify that the column is a date, and the vi-
sualization system can respond quickly and accurately
enough to avoid interrupting the user’s flow.

1.4 Related Work

Data preparation has been considered an analytic bot-
tleneck since at least the description of the Potter’s
Wheel system [22]. Since then, several other inter-
active data preparation systems have been proposed,
including Data Wrangler [15] and Google Refine [14].
While effective, these systems all make assumptions
about possible date formats, which we suggest are too
restrictive for real world data.
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Various approaches have been described for deriving
regular expressions, and a good overview is provided by
Li et al. in their paper on the ReLIE system for deriving
regular expressions given a starting expression provided
by a domain expert [18]. The Minimum Descriptive
Length technique first described in Rissanen [23] was
used in [22] to generate regular expressions.

There are several bodies of research on developing se-
mantic parsers and grammars for interpreting time and
date expressions. Lee et al. use a combinatory categor-
ical grammar by combining the TIMEX3 standard [4]
with contextual cues such as document creation time
to determine the reference for parsing time expressions
such as ‘2nd Friday of July’ [17]. Related work by Ga-
bor et al. employs a probabilistic approach for learning
to interpret temporal phrases [7]. Han and Lavie devel-
oped a formalism called the Time Calculus for Natural
Language (TCNL), designed to capture the meaning
of temporal expressions in natural language. In this
formalism, each temporal expression is converted to a
formula in TCNL, which then can be processed to calcu-
late the value of a temporal expression. Their temporal
focus tracking mechanism allows correct interpretation
of cases like ‘I am free next week. How about Friday?’,
where the TCNL formula for Friday, reflects the oc-
currence of ‘next’ in the preceding sentence [12]. In
all this previous research using natural language tech-
niques, the interpretation of temporal expressions are
done individually, using the presence of lexical tokens
such as ‘next’ and ‘past’ along with the tense of the
verb tokens.

Our work differs from these previous methods for
parsing date-time expressions as we are using an en-
tire column of data as context without the necessary
presence of rich lexical identifiers to determine tempo-
ral context. This kind of data tends to be prevalent in
datasets that are used in visualizations.

1.5 Contributions

• By analyzing an online corpus, we provide evidence
that practical date parsing requires the ability to
recognize hundreds of formats.

• We show how to extend prior work on Minimum
Descriptive Length structure extraction to gener-
ate a freely available date format domain language
with over 95% accuracy.

• We describe a second Natural Language Process-
ing technique for generating the same date format
domain language with similar accuracy. We de-
scribe how the basic algorithm is extended to sup-
port grammar variants and constraints unique to
date formats. The parsing algorithm is extended to
compute an overall dominant pattern over a data
column.

• We provide evidence that the development of mul-

tiple, independent parsing algorithms provides an
effective means of cross-validation on large cor-
pora.

• We describe some limitations of this domain lan-
guage that would improve its utility.

2 Preliminaries

2.1 The ICU Date Format Language

The choice of a date format syntax for generation is
somewhat arbitrary, but for the purposes of exposition
we will be using the formatting language defined by
the ICU open-source project [5]. We chose this format
because we were already using ICU in our system, we
had access to the source code, and it provides localized
date part data for a large number of languages (e.g.,
month names). ICU’s format syntax is typical of most
syntax languages and provides a large number of date
part codes, and a representative subset of it is repro-
duced in Table 2. The complete syntax is documented
at the ICU web site [5]. Other syntaxes can either be
generated directly from the algorithms, or by translat-
ing the ICU syntax into into the desired syntax. (The
latter is how our visualization system internally gener-
ates formats for RDBMSs that have non-ICU syntax.)

While fairly extensive, the ICU syntax has a few lim-
itations when working with real-world data. It has no
support for 4-letter month abbreviations (e.g., Sept.),
ordinal days (e.g., July 4th), quarter postfix notation
(e.g., 2Q) and variant meridian markers (e.g., a.m.).
These limitations did not affect the results significantly,
and in the future we hope to submit handlers for these
formats to the ICU project.

2.2 The DATEPARSE Function

The date format generated by the algorithms is pre-
sumed to be a string argument to a scalar function
called DATEPARSE, which converts a string value to a
date value using the format string. Several examples of
this kind of function can be found in RDBMSs such as
MySQL’s STR TO DATE, Oracle’s TO TIMESTAMP and
Postgres’ TO TIMESTAMP. There are also programming
language library implementations such as Python’s
strptime and ICU’s own DateFormat::parse.

3 Minimal Descriptive Length

The first algorithm is a Minimum Descriptive
Length [23] approach derived from the domain sys-
tem presented in the Potter’s Wheel system of Raman
et al. [22]. We describe a number of extensions to
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ICU
Code

Interpretation

yy year (96)

yyyy year (1996)

QQ quarter (02)

QQQ quarter (Q2)

QQQQ quarter (2nd quarter)

MM month in year (09)

MMM month in year (Sept)

MMMM month in year (September)

dd day in month (02)

EEE day of week (Tues)

EEEE day of week (Tuesday)

a am/pm marker (pm)

hh hour in am/pm 1:12 (07)

HH hour in day 0:23 (00)

mm minute in hour (04)

ss second in minute (05)

S millisecond (2)

SS millisecond (23)

SSS millisecond (235)

zzz Time Zone: (PDT)

Z Time Zone: RFC 822 (-0800)

ZZZZ Time Zone: (GMT-08:00)

ZZZZZ Time Zone: ISO8601 (-08:00)

’ escape for text

Table 2: ICU Format Codes.

their structure extraction system to support more com-
plex redundancy, non-English locales, improved perfor-
mance and date-specific pruning.

3.1 Domains

Potter’s Wheel presents an algorithm for deriving a
common structure for a set of strings by breaking each
string down into a sequence of domains. A domain is a
set of strings, with a few optional statistical properties.
Each one is defined by an interface that includes:

• A required inclusion function match to test for
membership in the domain (e.g., the domain
<Digits> returns true for "123" and false for

"abc".)

• An optional function cardinality to compute the
number of values in the domain with a given length
(e.g., the domain for three letter month names
(MMM) would return 12 for the length 3 and 0 oth-
erwise.)

• An optional function updateStatistics to update
statistics for the domain based on a given value
(e.g., the domain MMM might keep a histogram of
how frequently each month was encountered.)

• An optional function isRedundantAfter to pre-
vent consideration of a domain that is redundant.
(e.g., the domain <Digits> would be redundant
after itself because there is no difference between
a single run of digits and two adjacent runs.)

In our approach, we implement all of these functions,
but with significant changes to isRedundantAfter to
increase the level of pruning applied during domain enu-
meration.

With this interface, we can now define a set of do-
mains for each date part that we wish to be able to
parse. These are mostly straightforward enumerations
and numeric ranges, each tagged with the ICU format
code. Since the ICU parser is flexible about parsing sin-
gle or double-digit formats, we use double-digit formats,
but accept one or two digits. One important exception
to this rule is for years, which are fixed width fields (2
or 4).

We found that the inclusion of arbitrary numeric do-
mains caused the run time to grow exponentially as the
number of possible matches could not be pruned intel-
ligently. This restriction extends to domains that can
contain arbitrary digit sequences (such as <Any>). Be-
cause of this restriction, the algorithm cannot extract
non-date numeric fields.

3.2 Redundancy Extensions

A difficulty in using this kind of structure extraction
is that the algorithm for enumerating structures is ex-
ponential in the number of domains. This is especially
true in the date format problem because there are iden-
tical domains (e.g., months and meridian hours), nearly
identical domains (e.g., days and hours) and there are
often no field delimiters (e.g., 2012Mar06134427). To
handle this, we extend the original redundancy rules
with two other sets of domain identifiers:

• A set of prunable identifiers, which are not allowed
to precede the domain. For example, once we have
a month field, no other month fields should be gen-
erated. Each month domain therefore lists all the
month domains in its prunable set.

• A set of context identifiers, one of which must
have been previously generated before the domain
is considered. For example, a meridian domain
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can only be generated once an hour field has been
found, but there may be other intervening fields.

3.3 Performance

Structure enumeration is computationally expensive, so
we have added a number of enhancements to the orig-
inal domain extraction algorithm to keep the run time
low enough for interactivity.

3.3.1 Domain Characteristics

Date domains typically have small widths, so we found
it advantageous to provide the shortest and longest
match sizes for use in structure enumeration and match-
ing. For example, months have between 1 and 2 digits,
so there is no need to test matches whose length is out-
side this range.

Date domains are also often uniform in that adding
more characters to a mismatch will not help. For exam-
ple, a 2-digit day domain that does not match a 1-letter
substring will not be able to generate a match by adding
more characters.

3.3.2 Parallel Evaluation

We have also identified two opportunities for parallel
computation during structure enumeration. Enumer-
ating the matching structures for a single sample is
computationally expensive, but the samples themselves
are independent. Partitioning the samples allows each
thread to produce a set of candidate structures, which
can eventually be merged to produce a single candidate
list. Once the list has been generated, the evaluation of
each independent structure (computation of the MDL,
recording of domain statistics and parameterizing the
structure) can be conducted in parallel.

3.4 Unparameterization

Domain parameterization is an important part of gen-
erating compact representations via MDL, but it cre-
ates problems for date recognition. If (say) a set of
dates contains a constant month string (e.g., all val-
ues are in September) it is important to keep track of
the month name domain so that the DATEPARSE func-
tion will parse the month. When we parameterize a
constant generic <Word> domain, we therefore tag it
with any date part domain that it matched. We then
need to apply an additional pruning step to remove
any structures that also found an equivalent domain
(e.g., two-digit month). These rules are equivalent to
the context-based redundancy rules in Section 3.2, but
have to be applied again after the parameterization of
generics.

3.5 Global Pruning

The pruning rules used for the structure extraction re-
duce the search space dramatically, but they are also
contextual and can only look backwards. The domains
also contain a fair amount of ambiguity that requires
the application of problem space knowledge. This made
it necessary to add some post-generation global pruning
rules:

• The set of date parts cannot contain place value
gaps (e.g., structures that have year and day with-
out month are removed.)

• Similarly, the set of time parts cannot contain place
value gaps and must also be in place value order
(times are never written in orders such as mhs.)

• The existence of time parts cannot make dates in-
complete (e.g., patterns like year-day-hour are re-
moved.)

• Two digit years require special handling. In par-
ticular, they cannot appear adjacent to a two-
digit field if the structure contains any punctua-
tion. (This can come up in some small early 21st
century year domains where a two-digit year can
masquerade as almost any numeric field e.g., 08 for
2008.)

3.6 Locale

Providing an acceptable international user experience
requires correct handling of the column locale. Accord-
ingly, at the start of the structure extraction we use
the locale to create a set of domains containing locale-
sensitive strings such as month names. We also use the
locale to map these strings to upper- and lower-case in
addition to the ICU mixed case strings. This enables us
to accurately compute MDL statistics without having
to map the input strings at runtime (which would be
slow).

Knowing the locale of a string is not always helpful.
In our test data, we found numerous cases where the
locale was specified (e.g., Sweden) but the data was
actually in English. Accordingly, we test both locales
and rank the combined results.

We have built this system for the Gregorian calen-
dar as we have little evidence of other calendars (e.g.,
Hebrew, Islamic Civil) being used for analytics. ICU
supports non-Gregorian calendars and we expect the
algorithm could be extended to them as well if needed.

3.7 Ranking

MDL structure analysis produces a ranked list of for-
mat candidates, but we have found that a number of
other properties of the formats should be preferred over
simple compactness:
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• We can apply each format to the set of samples
we have, to see how well the algorithm performs.
Formats with fewer parse errors are preferred.

• Date parts can be considered a place-value system,
so we prefer “more significant” components (e.g.,
month-day-year over hour-minute-second).

• If two formats from different locales give the same
results, prefer the original column locale. The sam-
ple set may have missed an example where this
could be important. For example, the month name
for “September” is the same in both English and
German, but “October” and “Oktober” are differ-
ent.

• If the format has an ambiguous date order (e.g.,
all days are less than 12), then prefer the default
date order of the locale. Again, the sample set may
have missed a counterexample, so this is the best
option.

• Once these semantic preferences have been con-
sidered, we then prefer the more compact (MDL)
representation.

The output of the algorithm is now an ordered list of
formats and associated locales. These can then be used
to drive a user interface that allows the user to choose
between the possibilities or the top-ranking format can
simply be used automatically.

4 Natural Language Processing

The second algorithm is a natural language approach to
parsing date and time formats. While regular expres-
sions can be used to match strings to known formats, we
chose a grammar approach as a generalization of regu-
lar expressions. Such an approach provides for greater
expressibility and less rigidity, without the expectation
of the input string to exactly match against one or more
of the known formats. We describe a particular form
of grammar called a context-free grammar approach as
well as extensions to the rules of the grammar that
are inherent to date and time properties such as gram-
mar variants, constraints, and assigning probabilistic
weighting through a supervised learning approach.

4.1 Context-Free Grammar

ICU date formats are well defined both structurally
and semantically, and can be defined by a context-free
grammar (CFG). This has several advantages. First, it
allows for modular syntax definitions, which simplifies
grammar development and enables reuse. Second, it
grants total freedom in structuring a grammar to best
fit its intended use. The power of such a grammar is its
expressiveness, and is not constrained by pattern rigidi-
ties that are prevalent in regular expressions and text
processing [11].

A CFG consists of a set of non-terminal symbols X, a
set of terminal symbols β, a start non-terminal symbol
S ∈ X from which the grammar generates the strings,
and a set of production rules τ , with each rule of the
form X → β [13].

We adopt the Backus-Naur Form (BNF) for defining
the grammar rules for DATEPARSE formats. In partic-
ular, we use the Extended Backus-Naur Form (EBNF)
as the notation is more compact and readable for fre-
quently used constructions [11]. We employ a Cocke-
Younger-Kasami (CYK) parser for syntactically pars-
ing a column of date-time strings based on the gram-
mar [9, 26, 16]. The parser is a dynamic programming
algorithm that identifies the highest probable syntactic
parse trees, given the grammar and an input date-time
string.

A portion of the EBNF grammar is specified below:

〈TimeGrammar〉 ::= 〈Hours〉 ’:’ 〈Minutes〉 ’:’
〈Seconds〉 〈TimeZone〉 〈AMPM 〉 (for 12-hour
formats);

〈DateGrammar〉 ::= 〈BigEndianDate〉
| 〈MiddleEndianDate〉
| 〈LittleEndianDate〉;

〈DateTimeGrammar〉 ::= 〈DateGrammar〉
| 〈TimeGrammar〉;

〈BigEndianDate〉 ::= 〈Year〉 〈Month〉 〈Day〉 ;

〈MiddleEndianDate〉 ::= 〈Month〉 〈Day〉 〈Year〉;

〈LittleEndianDate〉 ::= 〈Day〉 〈Month〉 〈Year〉;

〈Year〉 ::= 〈TwoYear〉 | 〈FourYear〉;

〈QuarterYear〉 := 〈Quarter〉 〈Year〉;

〈Day〉 ::= dd (where dd ∈ [01 − 31], depending on
month/year);

〈Month〉 := 〈MonthWord〉 | 〈MonthNumber〉;

〈MonthWord〉 := ‘January’ | ‘February’ | ‘March’ |
‘April’ | ‘May’ | ‘June’ | ‘July’ | ‘August’ |
‘September’ | ‘October’ | ‘November’ | ‘December’;

〈MonthNumber〉 := dd (where dd ∈ [01− 12]);

The parsed output is then converted to the ICU Date
Format Language in order to effectively cross-validate
results from the MDL algorithm. While this grammar
accounts for the use of meridian markers ‘a.m.’ and
‘p.m.’ for the 12-hour format, ICU does not support
these tokens, and they are simply ignored.
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4.2 Grammar Variants and Constraints

A classical CFG performs poorly on inflected expres-
sions resulting from misapplication of morphological
inflection and syntactic rules. Large numbers of non-
terminals are necessary for representation of all vari-
ations of such features, and the parser output would
consist of many parse trees. We extend the date-time
grammar by adding morpho-syntactic variants. These
variants allows the parser to correct for syntactic errors
(e.g., usage of whitespace characters and punctuation
marks), capitalization errors and abbreviations (e.g.,
‘Mon’ for Monday). We use several various external
corpora for such corrections [3].

The date-time grammar also includes a large number
of syntactically correct but semantically invalid date-
time expressions. While we have added range restric-
tions to symbols such as Hour (1–12 for 12-hour for-
mat and 1–24 for 24-hour format), Days (1–7), Month
(1–12), there are special cases that need to be ac-
counted for. For example, there is no ‘November

31, 2015’, ‘February 29, 2013’, or ‘Sunday, May

5, 1965’. November only has 30 days in any year; 2013
was not a leap year; and May 5, 1965 was a Wednesday.

While custom production rules can be added to the
existing grammar to exclude such expressions, this ap-
proach is not optimal as it leads to a rather large gram-
mar that needs to account for every single semantically
valid date-time sequence of terminal symbols. Rather,
we modify the existing grammar with the following ad-
ditional constraints to the Day terminal symbol for ex-
cluding such expressions:

• Restriction on the distribution of 30 and 31:
Months usually alternate between lengths of 30 and
31 days. We use x (mod 2) to get an alternating
pattern of 1 and 0, and then add the constant base
number of days, Day = 30+(x+1) (mod 2), where
x ∈ [1..12] months. We then add a bit-masking
function to the equation to correctly account for
the number of days for August through December

(x ∈ [8..12]): Day = 30 + (x+ bx8 c) (mod 2).

• LeapYear Restriction for February: While the
above restriction applies to all months barring
February, we also apply a constraint to the num-
ber of days for February, based on whether the
year is leap year or not. For this, we define a new
symbol in the grammar called LeapYear. If an
expression containing the month February or any
such variant (e.g., ‘Feb’, ‘2’) with the day ‘29’

and a year, would need to resolve the Year symbol
to be a LeapYear, defined as Year (mod 4) == 0.
However, this is just an approximation. The Gre-
gorian calendar also requires that a year evenly
divisible by 100 (e.g., 1800) is a leap year only if it
is also evenly divisible by 400.

4.3 Probabilistic Context-Free Gram-
mar

Pattern-recognition problems such as parsing date and
time formats initiate from observations generated by
some structured stochastic process. In other words,
even if the initial higher-level production rule of the
grammar is known (i.e. date, time or date-time), there
could be several directions that the parser resolves to.
For example, for ‘5/6/2015’, the pattern could either
be M/d/yyyy or d/M/yyyy.

In the context of CFGs, probabilities have been used
to define a probability distribution over a set of parse
trees defined by the CFG, and are a useful method
for modeling such ambiguity [10, 20]. The resulting
formalism called Probabilistic Context-Free Grammar
(PCFG), extends the CFG by assigning probabilities
to the production rules of the grammar. During the
process of parsing the date-time pattern, the probabil-
ities are used to rank the pattern(s) that a given string
resolves to in the grammar.

Given a CFG grammar G, the production rules are
of the form X → β where X is the left-hand side of the
rule, while β is the right-hand side. We define τG(s)
as the set of all possible parse trees for input date-
time string s. For any X → β ∈ τ(G), the probability
p(X → β) ≥ 1. In addition,

∑
(X→β)∈τG = 1. The

parser then chooses the parse tree with the maximum
probability, i.e. given a date-time string s, as input,
we determine the highest scoring parse tree X → β as
max(X→β)∈τ(s)p(X → β).

Assigning initial probability weights to the grammar
for computing the parse with the highest weight, tends
to be a more scalable and flexible approach to disam-
biguation rather than building a deep knowledge ontol-
ogy. We bootstrap the probability weights in the PCFG

as follows:

• Similar to the MDL ranking properties, rules
involving the non-terminal DateGrammar on the
left-side of the rule, are assigned probability
weights higher than those rules with the non-
terminal being TimeGrammar. In practice, as-
signing p(DateGrammar → β1) = 0.9 and
p(TimeGrammar→ β2) = 0.7 leads to optimal rank-
ing of the parse trees.

• For the non-terminal symbol Day, the constraint
specified is a range between 01 and 28 − 31, de-
pending on month/year. However, for dd > 12,
p(Day → dd) = 1.0, and 0.5 otherwise. This as-
signment helps disambiguate days from months.

4.4 Supervised Learning

Having defined initial probabilistic weights to the PCFG,
we employ supervised learning with a known training
set of date time formats to estimate the rule probabili-
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ties. The training corpus is a set of files obtained from
an online data analysis corpus, described in Section 5.

The occurrence frequencies of the rules in the correct
(disambiguated) parse trees can be determined from the
corpus using the maximum-likelihood parameter esti-
mates.

p(X → β) =
Count(X → β)

Count(X)
(1)

where Count(X → β) is the number of times that the
rule X → β is seen in the parse trees τ , and Count(X)
is the number of times the non-terminal X is seen in
τ . These frequencies can then be normalized into rule
probabilities. This method produces accurate probabil-
ity estimates when trained on a sufficiently large corpus
of disambiguated parse trees.

4.5 Context Extensions to the Gram-
mar

The parser’s success is often limited by data ambigu-
ity, and incomplete expressions. For example an input
string ‘3/7/2005’ could either be interpreted as as the
7th day of March or the 3rd day of July depending
on the date format used. While a single entry cannot
resolve the parser’s ambiguity, a column of data pro-
vides more context for determining the dominant pat-
tern prevalent in the dataset.

The CKY parser is run over the same set of sam-
ples from each validation file to generate a probabilis-
tic distribution of possible parse trees corresponding
to a set of date-time patterns. As a second pass of
the parser, starting from the most probable parse tree,
each parse tree is then applied to the entire file’s colum-
nar data to determine the dominant pattern. For ex-
ample, another entry in the same dataset could be
‘25/3/2007’ thus increasing the probability that the
format is dd/mm/yyyy as opposed to mm/dd/yyyy.

In addition to the columnar data context, the locale
is also used to help maximize the probabilistic likeli-
hood of a particular date-time pattern. The locale of
the data column is used to retrieve the corresponding
corpora for helping with the parsing and for correcting
syntactical errors. However, similar to the locale sensi-
tivity issue described in Section 3.6, the locale and the
data may not always match. The dominant pattern is
simply computed over the data column based on the
ranked set of parse tree results.

5 Evaluation

For each of the two algorithms described, we want to
measure the fraction of candidate date columns that
the algorithm is able to recognize. We describe a large
training and experimental corpus that we collected, fol-
lowed by the results of applying each algorithm to that
data.

5.1 Data Preparation

The training data and test data are taken from data sets
published to a free, online data analysis website. This
website contains data sets that users analyzed and were
interested in sharing with other people through the web.
It may not be representative of data in other settings
such as corporate data warehouses, but each data set
is one that a user was willing to invest some time in
analyzing. The published data includes both the raw
data and how it was used for analysis. The service
limits data sets to a maximum of 100K rows stored in
a columnar database with collated strings.

We collected the contents of columns with names con-
taining any of the following strings: Date, month, cre-
ated, dt (abbreviation for date), mes (month in Span-
ish), datum (date in German), fecha (date in Spanish),
data (date in Portuguese), and the day character used
in Chinese and Japanese. Roughly 95% of the data on
the website is in English, but we attempted to include
non-English data that was available. Fields of any data
type other than date or datetime were analyzed, includ-
ing strings, integers, and floats. One file containing the
unique non-null values was created for each scanned col-
umn, and the column collation was stored in a second
table.

Most database and spreadsheet systems already de-
tect a limited set of date formats. For instance, typing
the string "12/31/1999" into Microsoft Excel, is au-
tomatically interpreted as the date 1999-12-31. The
Microsoft Jet library [1] used to read these text files
detects a few date formats as well. Any column al-
ready converted by Excel or Jet was not included in
this study.

The data was divided into two sets, one for training
and one for validation. There were 30,968 files in the
training set and 31,546 files in the resulting verification
set.

5.1.1 NULL Filtering

Each column was then reduced to a maximum sam-
ple set of 32. We excluded domain values that either
contain the substring NULL, contain no digits and at
most one non-whitespace character (e.g., " / / "), or
any empirically determined common NULL value (e.g.,
0000-00-00, NaN).

5.1.2 Sampling

The remaining samples were hashed and sorted on the
hash value, with the top 32 values retained as the col-
umn’s sample. We can increase the sample size, but
for dates, it appears to be an adequate number. In any
case, the median number of non-null rows per domain in
our test data is 50, so increasing the sample size would
have little benefit.
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5.1.3 Numeric Timestamps

After NULL filtering, a common class of date repre-
sentation (numeric timestamps) remained that was un-
suited for parsing via our date format syntax. This
included Unix epoch timestamps (expressed as second,
millisecond or microsecond counts from 1970-01-01)
and Microsoft Excel time-stamps (expressed as frac-
tional days since 1900-01-01). A simple test to check
that the column was numeric and inside a specific range
of values representing recent dates allowed us to tag
these columns to avoid analyzing them further (and in-
cidentally to identify them for generating a simple date
extraction calculation for the user.)

5.1.4 Partial Dates

Many of the date formats that we encountered were
incomplete dates, which necessitated creating rules for
what date scalar they represented.

ICU’s date parsing APIs allow the specification of
default values for parts not found in the format. In our
implementation, all time fields are set to 0 (midnight)
and the date fields are set based on whether the format
contains any date part specifications. When date parts
are present, we use 2000-01-01 as the set of default
date parts as it is the start of a leap year. When
dealing with pure time formats, we model the output
as a date/time and use 1899-12-30 for the date parts.

ICU will also parse Time Zones and Quarters (which
we interpret as the first month of the period.) RDBM-
Ses such as Oracle and Postgres that support time zones
will be able to take advantage of identified time zone
fields.

5.1.5 Training Data

Once the training data was analyzed, it was grouped by
date format. A sample of each produced date format
was manually labeled. This allowed us to quickly skip
over very common formats like MM/dd/yyyy and focus
our efforts on much less common formats. The sam-
ples were judged as to whether the produced format
was reasonable and were tagged with correct formats
if the produced format was unreasonable. A random
sample of 850 columns named exactly “date”, “time”
or “month” (case-insensitive) were manually judged.

5.2 Minimum Descriptive Length

Testing of the MDL algorithm was performed on a
24-core Dell T7610 running Windows 7 with the data
stored on a 250GB SSD.

To test the MDL algorithm, we ran it over the set of
samples from each validation file to generate a ranked
list of formats for the file. Each format was then applied
to the entire file’s data set, recording both the number

Number of Records 31,546

Error Rate 27.95%

Analysis Speed (µs) 2,245.04

Validation Speed (µs) 1.65

Median Not Null 50

Table 3: MDL Parsing Statistics.

of errors and the elapsed times. In cases where we gen-
erated multiple formats and the main format produced
errors, we applied the second format to the unparsed
strings. The summary statistics from this processing
are presented in Table 3.

The analysis speed is the average time needed per
sample for structure extraction. At 2.2ms, this is well
below most human perceptual thresholds for a set of 32
samples, so any latency in command execution would
be restricted to the ability of the underlying database
to provide the samples for analysis in a timely manner.
A columnar database (such as the one underlying our
visualization system) can often supply such domains
without a full table scan, further improving responsive-
ness.

The validation speed is the average time needed to
parse a value, and provides an estimate of how fast
the ICU implementation can process string values into
scalars and works out to 620K values per core per sec-
ond.
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Figure 3: MDL Error Rate

The error rate reflects the fact that only about 40%
of the files have an associated format that parses the
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non-null values without error. To examine the error
rate in greater detail, we refer to Figure 3.

The two horizontal reference lines in Figure 3 show
that we found 744 distinct formats that parsed the
13, 424 associated files with no error. This is a remark-
able number of distinct formats and underscores the
need for this kind of algorithm. Raising the error rate
threshold to 5% results in about 2500 formats found in
15, 000 files, or nearly half of the files in the corpus.

What do these formats look like? Figure 4 shows a
histogram of the 25 most common formats containing
a year format code at the 5% error threshold, color-
coded by error rate. (A sample value is provided to the
right of each bar for illustrative purposes.) The formats
have also been filtered to files with at least 5 samples.
Most of the samples are clearly dates with a wide range
of formats (the format where the time zone is between
the time and the year is surprisingly common.)
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Figure 4: MDL Output

Some of the dates are clearly just numbers, but our
approach is to assume that when the user tells us that
the column contains dates we should find the best fit.
The samples include dates from a wide range of his-
torical sources (e.g., Roman pottery dates) so we have
elected to defer the semantic identification task to the
user.

5.3 Natural Language Processing

We implemented the grammar, training and parsing in
Python 3.4.1 using the Natural Language Toolkit li-
braries [2] on a quad core Dell T7600 running Windows
7. The complexity of the CYK parsing algorithm is
O(n3|G|), where n is the length of the input and |G| is
the size of the grammar [26]. The PCFG grammar uses
a set of 22 phrase-level non-terminals and 30 terminals
to classify the various constituents in the corpus. Be-
cause the CYK algorithm finds the maximum likelihood
solution, there are no search errors (rather probability
p = 0, and a modification in the grammar is required
to improve accuracy.

Similar to the MDL algorithm, the CYK parser is
run over the same set of samples from each validation
file to generate a ranked list of parse trees represent-
ing the date-time formats. As a second pass of the
parser, starting from the most probable parse tree, each
parse tree is then applied to the entire file’s columnar
data to determine the dominant pattern(s). For the sec-
ond pass, we can parallelize the CYK parsing because
the dependencies between reapplying the ranked list of
parse trees are very sparse.

The initial average parsing speed to compute the
ranked set of probable parse trees is 0.93s, and the av-
erage time taken to compute the overall dominant pat-
tern(s) for the entire column of data is 1.4s. While the
natural language parsing implementation is in Python
as the NLTK package is easily configurable, we could
expect greater speed-up in parsing performance by em-
ploying C/C++ CYK parsing libraries.

Out of the 31, 546 files used for testing, the NLP
parser identified a dominant format for 26, 534 (84.11%)
where p >= 0.5. 1634 unique formats were identified.
Figure 5 shows a histogram of the most common for-
mats identified containing Year. There are some vari-
ations compared to Figure 4 including the fact that we
are not filtering the results by any error rate in the NLP
parsed results.

5.4 Cross-Checking

We compared the results of the minimum descrip-
tion length and natural language processing algorithms.
The two algorithms match for 97.9% of our validation
set. The main differences in the results are due to
small differences in the implementations. The mini-
mum description length implementation recognizes for-
mats with leading plus and minus signs, but these are
almost certainly numbers, not dates. The minimum de-
scription length implementation also recognizes the Ex-
cel date formats, but this was not supported by the nat-
ural language implementation. There was one file that
contained formats such as ‘Fall 2000’ and ‘Spring

2000’, and the two algorithms picked different seasons
in their format. One other file contained a set of in-
tegers that are not actually dates, and one algorithm
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Figure 5: Most common date formats identified by the
NLP algorithm.

picked MMyyyy format, while the other picked HHmmss

format.

6 Future Work

During testing, we found a number of columns that we
were not able to process with these techniques. Many
columns contained multiple date formats. We would
like to recognize this situation and generate predicate-
based calculations (e.g., if the string matches format
1 then apply format 1 else ...) to increase the accu-
racy of the results and thereby make the experience
even more seamless for the user. Other columns contain
date ranges, which we would like to handle by generat-
ing multiple calculations, possibly by combining regular
expressions with date parsing.

In this paper, we have considered the parsing of
strings, but dates are often formatted as integers (e.g.,
201507016). It is significantly faster to decompose in-
tegers into date parts using arithmetic operations (e.g.,
mod and div) than by using locale-sensitive string pars-
ing functions. Timestamp preparation from numeric
representations is a related task that we would also like
to automate.

In the course of our research, we have also identified a
number of date part variants (e.g., ordinal dates, four-
letter month abbreviations, alternate meridian markers
and postfix quarter syntax) that we would like to com-
mend to the ICU project, along with possible imple-
mentations.

7 Conclusion

In this paper, we have described two effective algo-
rithms for extracting date format strings from a small
set of samples, one using a minimum descriptive length
approach and one using natural language techniques.
Both algorithms are accurate enough to be used auto-
matically without user involvement. The MDL algo-
rithm is also fast enough to deploy in an interactive
environment, freeing users from the need to interrupt
their cognitive flow during analysis in order to learn a
formatting language.

While validating the algorithms on a large corpus,
we also found that the number of distinct formats in
the wild is surprisingly high, and demonstrates the wis-
dom of including general-purpose date parsing func-
tions in data visualization tools, data cleaning tools
and RDBMSs. In particular, it is interesting to note
that the most prominent open source RDBMSs (e.g.
MySQL and Postgres) both have a built-in version of
DATEPARSE, possibly reflecting that this is a common
need that gets implemented when users are empowered
to extend the function library of an RDBMS.
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