
16

Confidence Bounds for Sampling-Based
GROUP BY Estimates

FEI XU, CHRISTOPHER JERMAINE, and ALIN DOBRA

University of Florida, Gainesville

Sampling is now a very important data management tool, to such an extent that an interface for

database sampling is included in the latest SQL standard. In this article we reconsider in depth

what at first may seem like a very simple problem—computing the error of a sampling-based guess

for the answer to a GROUP BY query over a multitable join. The difficulty when sampling for the

answer to such a query is that the same sample will be used to guess the result of the query for

each group, which induces correlations among the estimates. Thus, from a statistical point-of-view

it is very problematic and even dangerous to use traditional methods such as confidence intervals

for communicating estimate accuracy to the user. We explore ways to address this problem, and

pay particular attention to the computational aspects of computing “safe” confidence intervals.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing,
Relational databases; G.3 [Mathematics of Computing]: Probability and Statistics—Multivari-
ate statistics

General Terms: Algorithms, Theory, Reliability

Additional Key Words and Phrases: Approximate query processing, multiple hypothesis testing,

sampling

ACM Reference Format:
Xu, F., Jermaine, C., and Dobra, A. 2008. Confidence bounds for sampling-based GROUP BY estimates.

ACM Trans. Datab. Syst. 33, 3, Article 16 (August 2008), 44 pages. DOI = 10.1145/1386118.1386122

http://doi.acm.org/10.1145/1386118.1386122

1. INTRODUCTION

Over the last decade, sampling and other statistical approximation techniques
have been widely proposed as a way to speed up query processing in relational
database systems. Dozens of papers have been written on the topic; a few a
listed in the references section of this article [Acharya et al. 1999a; Dobra

Authors’ addresses: Department of Computer and Information Sciences and Engineering, Univer-

sity of Florida, Gainesville, FL 32611-6120; email: cjermaine@cise.ufl.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0362-5915/2008/08-ART16 $5.00 DOI 10.1145/1386118.1386122 http://doi.acm.org/

10.1145/1386118.1386122

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:2 • F. Xu et al.

et al. 2002; Haas and Hellerstein 1999; Ganti et al. 2000; Chaudhuri et al.
2001; Jermaine et al. 2005; Gibbons and Matias 1998]. The attractiveness of
statistical approximation is clear: during analytic query processing where most
queries are statistical in nature, a statistical synopsis of the database can be
used to provide a good guess as to the actual query answer in a fraction of
the time that may be required to compute an exact query answer. The in-
crease in query processing speed is related to the much smaller size of the
synopsis, which generally decreases both the CPU time required to answer the
query, as well as the amount of data that must be loaded from disk into main
memory.

The obvious downside of this speed-up is some inaccuracy in the approx-
imate query result. Fortunately, while end-users may be hesitant to accept
nonprecise answers, the pitfalls associated with returning an approximate
answer can be obviated using standard statistical techniques. For example, it
is often possible to accompany the guess with accuracy guarantees in the form
of probabilistic confidence bounds [Sarndal et al. 1992]: “With probability p,
the final answer to the query is between l and h.”

The specific problem that we consider in this article is that of developing
“safe” confidence bounds for a SUM/GROUP BY query whose answer estimated
using a sample of the database. Sampling has quite a few advantages com-
pared to other estimation methods, including the fact that a simple random
sample can be used to evaluate almost any multitable join, regardless of
the selection and/or join predicates present in the query. We are primar-
ily interested in an application where a small sample of a large database
has been precomputed or is obtained in response to a specific SUM/GROUP
BY query, though our methods are also applicable to online estimation
[Haas and Hellerstein 1999].

The fundamental motivation behind this article is that classic, univariate
statistical analyses are not applicable to providing sampling-based confidence
bounds for even the simplest GROUP BY queries—an issue that has been ignored
in the database literature to date. The reason for this is that the same sample is
used to evaluate the underlying query for each group, resulting in correlations
among the various, groupwise estimates. Obtaining independent samples for
each group is not a practical option. With 100 groups, an independent, 1%
database sample for each group (resulting in 100 different 1% samples) would
expectedly cover most of the database tuples, and then negate the benefit of
sampling.

To illustrate the problem in detail, we first consider the query: “What
were the total sales per region in 2004?” This query may be written in SQL
as

SELECT SUM(p.COST), s.REGION
FROM PRODUCT p, SALES s
WHERE p.PROD = s.PROD AND s.YR = 2004
GROUP BY s.REGION

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:3

Imagine that the answer to the query is guessed at by using random samples
from the following two database tables:

PRODUCT SALES
PROD COST PROD YR Region

thingy $10 thingy 2004 Asia
gadget $2 widget 2003 Asia
widget $3 thingy 2004 USA
dohicky $4 gadget 2004 USA

widget 2003 USA
thingy 2004 Europe
dohicky 2004 Europe

The random samples are used as input into a sampling-based estimator for the
answer to the query [Haas and Hellerstein 1999]. In order to apply the sim-
plest estimator, the sample from each of the two tables would be joined, and
the result scaled up by the inverse of each sampling fraction. The problem we
face is that the same sample of relation PRODUCT is effectively used to simul-
taneously answer three queries, one for each group—in this case, there is one
group associated with the region Europe, one with the region USA, and one with
the region Asia. If the first estimate was inaccurate, then the second and third
estimates are likely to be inaccurate as well. Note that each of the three re-
gions described in the database has experienced a sale of the thingy product in
2004, and thingy is the most expensive product available. As a result, if thingy
has not been sampled from the PRODUCT table, it is likely that the estimates for
Europe, Asia, and USA will simultaneously be too low.

Such correlation may be of great concern if an end-user will make decisions
based upon the results of several correlated approximations. A user may ask
a query that returns answers for 10 different groups, and receive 10 answers
with 90% confidence bounds for each. The user may then assume that since
each estimate is correct with 90% probability, that most of the approximations
will be correct. However, if the various estimates are strongly correlated, the
statistical reality may be that there is a 10% chance that each and every one of
the 10 approximations is incorrect.

1.1 Our Contributions

While such issues have been considered in statistics for decades [Miller 1981],
they have been ignored in the data management literature. This article makes
the following specific technical contributions:

—We identify the abstract problem of predicting the number of estimates that
are “incorrect” in the sense that the true query answers are outside of the
provided confidence intervals. We call this problem the sum-inference (SI)
problem.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:4 • F. Xu et al.

—We demonstrate the use of the SI problem for providing “safe” confidence
bounds for GROUP BY queries.

—We provide three possible solutions to the SI problem, and thus to GROUP BY
query estimation. One is a nonparametric Monte Carlo solution, one is a para-
metric solution, and one is a parametric Monte Carlo solution. We explore
the benefits and shortcomings of the various solutions.

—We carry out experiments to validate the theoretical developments and show
that SI-based solutions are computationally practical.

A final contribution is that, while the article presents a detailed exami-
nation of how to handle sampling-based estimates over SUM-based GROUP BY
queries, the techniques we consider are quite general and can be applied
more widely to other estimators. In fact, one reason for defining the SI prob-
lem and studying it in a general setting (outside of the context of GROUP BY
queries alone) is the potential for applying the SI problem to other types of
queries. We elaborate on how the SI problem might be applied more widely in
Section 7.

1.2 Article Organization

In Section 2 we give a brief introduction to terms and techniques from statis-
tics that are used throughout the article. The technical contribution starts in
Section 3 where we introduce the GROUP BY estimation problem. The major tech-
nical difficulty in designing estimators for GROUP BY queries is dealing with si-
multaneous statistical inference. To this end, we introduce the SI problem—
which isolates the statistical analysis of simultaneous inference from database
estimation—and show how it can be applied to GROUP BY. In Section 4 we propose
three methods to solve the SI problem. Section 5 considers computational issues,
such as how to efficiently compute the covariance of two estimates. Section 6
presents results of an empirical study of the proposed techniques. We indicate
other possible uses of the SI problem in Section 7, discuss related work in Sec-
tion 8, then conclude in Section 9.

The SI problem assumes that the covariances of the various estimates are
available. Obtaining such covariances is often a challenging problem by itself.
Thus, Appendix A of the article specifically considers the problem of deriving
and estimating covariances over a set of arbitrary join queries computed over
samples from one or more database tables.

The notation used throughout (except the Appendix, which is self-contained)
is summarized in Table I.

2. BACKGROUND: ESTIMATORS AND CORRELATIONS

In this section we discuss a few statistical preliminaries.

2.1 Estimators and their Properties

Let M be a parameter of interest that we are trying to estimate. In this article
the “parameter of interest” is typically the final answer to a query. An esti-
mate M of M is a single number computed from a sample or other statistical

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:5

Table I. Variables and Notations Used in this Article

μ Mean. When it is a vector, μi is ith component.

σ 2 Variance of one dimensional random variables.

�2 Covariance matrix.

Cov(X , Y) Covariance between random variables X and Y .

M̃ Estimator of parameter M .

X i,... Bernoulli(zero/one) random variable for component i, . . .

N Multivariate normal random variable in an SI problem. Ni indicates the

ith component.

n Number of estimators in the SI problem.

pi(x) Probability density function of Ni in N .

pi, j (x, y) Joint probability density function of Ni and N j in N .

l Lower bound. When a vector, li indicates the ith component.

h Upper bound. When a vector, hi indicates the ith component.

s Score vector, si indicates the ith element.

ζ The random variable of an SI problem.

F The distribution of ζ .

ρ Coefficient for simultaneous confidence intervals.

F̃ The approximate distribution of ζ .

ε A small threshold.

I (A) Indicator function for predicate A. I (A) = 1 if A is true, and 0 otherwise.

m Total number of non-diagonal entries in a covariance matrix.

T The set of all non-diagonal entries in a covariance matrix.

S A sample from T .

V.. Components used in computing covariance matrix entries.

summary, which serves as a guess of the value of M . Note that if the estima-
tion process is repeated many times, many different estimates will be observed.
These estimates are typically characterized using a random variable. The ran-
dom variable whose observed value is used to estimate M is called an estimator
and denoted M̃ .1

For example, consider a SUM query over a single database table. Specifically,

SELECT SUM (f (R))
FROM R

The function f can encode any mathematical function over tuples from R, and
can encode an arbitrary selection predicate. Also, a query of this form can be ex-
tended to handle a clause of the form GROUP BY att1, att2, . . . by first identifying
all of the n groups induced by the GROUP BY clause, and then rerunning the query
n times. During the ith run, f (R) is modified to accept only tuples from the ith
group (f evaluates to zero for any tuple that is not from that group). For ex-
ample, imagine that we add a clause GROUP BY gender to the above query, and
gender has values male and female. We could simply define a function fmale
where fmale(R) = f (R) if R.gender is male and zero otherwise, as well as a
function f f emale where ffemale(R) = f (R) if R.gender is female. Then, running
the query twice (once with each function) gives an answer to the GROUP BY query.

1When M is a parameter to be estimated, we will use M̃ to denote the associated estimator; we will

also make use of the standard convention of using a capital letter such as N to denote a random

variable.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:6 • F. Xu et al.

Given such a query, the final answer can be computed as

M =
∑
r∈R

f (r) (1)

The simplest estimator for M may be random sampling without replacement.
To estimate M using this method, denote by R ′ the set of samples from R and
let nR denote the sample’s size. If NR is the number of tuples in relation R,

we can then express M̃ by introducing a set of Bernoulli (zero/one) random
variables that indicate whether tuples from R are not/are in R ′. Let X k be
the variable that indicates whether the kth tuple from R is in R ′. With this, a
natural estimator for the aggregate query would be

M̃ = NR

nR

NR∑
k=1

X k f (k) (2)

This estimator simply sums the elements in the sample set and scales the result
according to the inverse of the sampling fraction.

The estimator M̃ is called an unbiased estimator because E[M̃] = M , where
E[M̃] is the expected value of the estimator. That is, if the estimator were
used many times in succession, the average would be exactly equal to the true
answer.

For an unbiased estimator, the variance is usually used as the criteria to
indicate how good the estimator M̃ is, where σ 2(M̃) = E[M̃ 2] − E2[M̃]. The
variance of this estimator is

σ 2(M̃) = NR

nR

nR − 1

NR − 1

NR∑
k=1

NR∑
l=1,l �=k

f (k) f (l) − NR

nR

NR∑
k=1

f 2(k) (3)

If an unbiased estimator has small variance, then there is only a small chance
that its value is far from the true value for the parameter M.

This very simple estimator can be extended to a join over an arbitrarily large
number of tables in a straightforward way. We refer to the resulting estimator
as the Haas-Hellerstein estimator [Haas and Hellerstein 1999]. This general-
ization is the estimator used by the UC Berkeley Control project [Hellerstein
et al. 1999], and if one samples directly from a precomputed join, the simpler,
one-table version of the Haas-Hellerstein estimator is the estimator used by the
AQUA project [Acharya et al. 1999b] by their join synopsis method [Acharya
et al. 1999a].

To extend the estimator, we first assume that T1, T2, . . . , Tk are k database
tables and that we wish to guess an answer to a query of the form

SELECT SUM (f (T1, T2, . . . , Tk))
FROM T1, T2, . . . , Tk
WHERE pred (T1, T2, . . . , Tk)

We let g (T1, . . . , Tk) be a function that returns f (T1,. . . , Tk) if pred is
true, 0 otherwise. We assume the numbers of tuples in these tables are
N1, N2,. . . , Nk , and the sample sizes are n1, n2, . . . , nk , respectively. We define

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:7

Bernoulli random variables X w1, . . . X wk that govern whether or not the wth
tuple from T1, . . . , Tk are sampled, respectively. The following then serves as
the Haas-Hellerstein estimator for the sum of f :

M̃ = N1 . . .k

n1 . . . nk

∑
w1,...,wk

X w1 . . . X wk g (w1, . . . , wk) (4)

2.2 Errors and Confidence Intervals

A confidence interval (CI) for M is an interval [l , h] with a user-defined proba-
bility 1 − p associated with it. This is the probability that the interval that is
chosen actually contains the parameter of interest. Generally, 1 − p is called
the confidence level and p is called the Type-I error of the estimator M̃ .

Properties such as an estimator’s variance and unbiasedness can be used to
compute a CI. Define

err = M̃ − M (5)

to be the error of some estimator M̃ . Since the estimator is unbiased, the mean
of err is 0 and the variance is equal to σ 2(M̃). According to the Central Limit the-
orem, the distribution of err is asymptotically normal for the Haas-Hellerstein
estimator considered in this article, as long as a large-enough database sample
is used (see Haas and Hellerstein, Sections 5.2.1 and 6 for more details [Haas
and Hellerstein 1999]). Since (as discussed in the previous section) a GROUP BY
query can be encoded as a number of Haas-Hellerstein estimators, the estimate
for each group in a SUM-based GROUP BY query is also normally distributed.

If the error follows a normal distribution, a CI at confidence level 1 − p is
[−z p

2
σ (M̃), z p

2
σ (M̃)] where z p

2
is a coefficient that is determined by the cumu-

lative density function for the normal distribution and σ (M̃) is the standard

deviation of M̃ , which is the square root of the variance σ 2(M̃) . Thus, the prob-
ability that M − M is in this interval is 1− p. By manipulating this expression,
we obtain

Pr
[
M ∈

[
M − z p

2
σ (M̃), M + z p

2
σ (M̃)

]]
= 1 − p (6)

Therefore, [
M − z p

2
σ (M̃), M + z p

2
σ (M̃)

]
(7)

is a CI for M with confidence level 1 − p.

2.3 Correlations

This article considers how correlations between estimates computed using the
same synopsis may be taken into account. In general, the covariance between
two variables provides a measure of the correlation between them. The covari-
ance for two random variables X and Y is defined as

Cov(X , Y) = E[X Y] − E[X]E[Y] (8)

For uncorrelated variables, the covariance between them is 0. If Cov(X , Y) > 0,
then Y tends to increase as X increases, and if Cov(X , Y) < 0, then Y tends

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:8 • F. Xu et al.

Fig. 1. Standard bivariate normal(coef = 0.5(left) and −0.5(right)).

to decrease as X increases. Figure 1 shows the contours of standard bivariate
normal distribution with covariance 0.5 and −0.5, respectively. From the figure,
we see that for a negative covariance the distribution’s contours are a set of
ellipses, the major axes of which fall into the second and fourth quadrants,
respectively. This indicates that Y tends to decrease as X increases. For the
positive covariance the contours are a set of ellipses, the major axes of which
fall into the first and third quadrants. This indicates that Y tends to increase
as X increases.

In general, such multivariate distributions are specified using a covariance
matrix � and a mean vector μ. For the joint distribution of the error of a set of
estimators M̃i, μi = 0 and �i, j = Cov(M̃i, M̃ j).

3. THE SI PROBLEM AND GROUP BY QUERIES

This particular section first describes what information or statistics should be
communicated to a user in the case of an approximate GROUP BY answer, so that
he or she is fully aware of the accuracy of an approximation. We then formally
define the abstract problem that must be solved in order to compute this infor-
mation, which we call the SI Problem. The section concludes by describing how
a solution to the SI problem can be used to compute “safe” GROUP BY bounds.

3.1 GROUP BY and Multiple Inference

A GROUP BY query may be viewed as a large set of individual queries asked
simultaneously, one for each group. Unfortunately, in this situation a traditional
confidence bound such as

“With probability p, the answer to group i is within the range li to hi.”

has only a very narrow correct interpretation. As soon as a user looks at the
results for a second group j , statistically speaking the user needs to “forget”
that she or he ever saw the bounds for group i and consider group j in complete
isolation! When two or more groups are considered together or compared with
one another, the accuracy parameter p is meaningless, and hence dangerous.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:9

Fig. 2. A GUI for GROUP BY query.

Rather than viewing confidence bounds individually, we propose to extend the
traditional guarantee and instead present a guarantee taking the form

“With probability p, at least k of n groups are within the ranges (l1 to h1), (l2

to h2), . . . , and (ln to hn), respectively.”

In the case where n = k, these new bounds are exactly equivalent to the classi-
cal method from statistics for dealing with simultaneous estimates: the bounds
are altered so that, with high probability, each one of the estimates are within
the specified ranges [Miller 1981]. However, statisticians have begun to ac-
knowledge that this is overly restrictive [Benjamini and Hochberg 1995]. For
example, the classic method for controlling simultaneous error is to assume
that the error is additive (this is known is the Bonferroni correction or the
union bound). In order to provide 100 bounds that are all correct with proba-
bility 0.99, each one would be correct with probability 0.9999. This can result
in needlessly wide confidence bounds. Our generalization of the bound to in-
clude the parameter k allows the user to control the extent to which group-
wise correlations can affect the number of incorrect estimates. No longer is a
bound derived by computing the probability that it is incorrect; rather, it is
derived by computing the probability that a set of bounds are simultaneously
incorrect.

In order to make this a bit clearer, Figure 2 gives a primitive user interface
that could be used to present such bounds to the user for a GROUP BY query. The
scroll box at the right of the figure gives a confidence bound for each of the
100 groups that are found in the query result. Using the interface, the user
chooses p and k, and the bounds are computed accordingly. In addition, the

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:10 • F. Xu et al.

user is supplied with a plot that shows how likely it is that n − k or more of the
bounds computed are wrong. For example, Figure 2 shows that there is a very
small but nonzero chance that at least 30 of the 100 bounds given are incorrect,
and there is only about a 0.003 chance that at least 20 of the 100 bounds are
incorrect. Since these are relatively small values, the user can be sure that (in
this case) the chance of a catastrophic error in the query result is small.

3.2 The SI Problem

The issue at the heart of this article is how such simultaneous bounds can be
computed in an efficient, principled fashion. This section describes the Sum-
Inference problem, or SI problem for short, which can be used to quantify the
extent to which correlation among statistical estimators for database queries
can cause many estimates derived from the same synopsis to be incorrect. This
problem will form the basis of our computation of safe GROUP BY bounds. The
main reason for formulating the abstract SI problem instead of directly intro-
ducing and analyzing estimates for GROUP BY queries is the fact that, as ex-
plained in Section 7, there is the potential that the SI problem can be applied
to other types of queries. A side benefit is that the analysis GROUP BY queries can
be dissociated from the particular method used to estimate the total for each
individual group.

The SI problem models the situation where we have n random variables. The
random variable Ni corresponds to a possible answer to the the ith query or
group. We will assume that Ni is normally distributed (which is true asymptoti-
cally for a sample-based SUM/GROUP BY queries due to the Central Limit theorem;
see Section 2 for details). Also given as input into the SI problem is a set of n
valid ranges, with one range for each random variable; each range corresponds
to a confidence bound on the answer at each query. The ith range is defined by
the bounds li and hi. If the ith range or bound is wrong – that is, if Ni happens
to fall outside of the range from li to hi – then we incur a penalty or score si.
If we are simply trying to count the number of incorrect ranges, then si = 1;
in general, si may take a different value. We then define the following random
variable:

ζ =
100∑
i=1

I (Ni �∈ [li, hi])si (9)

In this expression, I is a function that returns 1 if its boolean argument eval-
uates to true and 0 if it is false. If we define a distribution function F such
that F [k] gives the probability that the above expression evaluates to k, then
given F one can check the probability that the total penalty (or total number of
incorrect confidence bounds) meets or exceeds k, which can be used as a solid
indicator as to the accuracy of the given bounds.

Formally, the SI problem is defined as follows:

The Sum-Inference (SI) problem. Given

—a multidimensional normal random variable N = 〈N1, N2, . . . , Nn〉 with
mean vector μ and covariance matrix �,

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:11

—a vector s of n scores,

—a vector l of n lower bounds, and

—a vector h of n upper bounds

the SI problem is the problem of inferring the distribution function F , where
F [k] = P (

∑
i I (Ni �∈ [li, hi])si = k), i.e. F [k] is the probability of observing a

total penalty of k due to incorrect intervals.
Unfortunately, it is easy to show that it is likely impossible to infer charac-

teristics of the distribution of F directly:

LEMMA 3.1. Hardness of the SI problem. If F [k] can always be computed in
polynomial time, then P = NP.

PROOF. Given a set of n integers S = {e1, e2, . . . , en} and a number k, the
subset-sum problem asks whether there is a subset of S such that the summa-
tion of this subset is k. This is known to be NP-complete. We reduce this prob-
lem to the SI problem. To solve an instance of the subset-sum problem using
the SI problem, we construct a random variable N = 〈N1, N2, . . . , Nn〉, where
N1, N2, . . . , Nn are independent, normally distributed random variables with
mean 0 and variance 1. We also construct a vector of scores s = [e1, e2, . . . , en]T

such that each element in S is in this score vector once and only once. We also
construct two vectors of lower bounds and upper bounds l and h where the
elements are the extent of 95%, two-sided confidence intervals. We then solve
the resulting SI problem.

Since each confidence interval is correct with probability 95%, there is a 5%
chance that each random variable is outside the interval, thus there is a nonzero
probability that any subset of incorrect predictions is obtained. This means that
all subsets are possible with greater than zero probability, and so determining
whether F [k] �= 0 is actually a question of whether a subset with sum k exists.
Thus, the subset sum problem has a solution if and only if F [k] �= 0 for the
resulting SI problem.

Subsequent sections of this article will consider appropriate methods for com-
puting approximate solutions to the SI problem.

3.3 Applying the Sum Inference Problem to GROUP BY Queries

In this section we describe a simple algorithm (Function GetIntvls) that makes
use of the SI problem to compute the information necessary to display the user
interface described previously. As described, the user supplies parameters p and
k such that with probability p, at least k of n groups are within the intervals or
bounds that are computed; intervals are then chosen automatically to ensure
the desired accuracy.

The algorithm makes the assumption that the selected intervals for every
group should have the same accuracy. That is, we assume that the ratio of the
width of the ith interval to the variance of the ith interval’s standart deviation is
always ρ. This is reasonable, since always using the same ratio gives all groups
the same priority; without this restriction the number of acceptable confidence
intervals is infinite. A binary search is then performed on the possible ρ values.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:12 • F. Xu et al.

At each iteration, an SI problem is constructed that can be used to check if a
given ρ produces an actual p that is too high or too low for the user’s chosen k
value.

Function Get Intvls (k, p, n, μ, �): [l , h]
1. Build a score vector s where si = 1 forall i
2. Choose an initial upper bound ρu for ρ
3. Set ρl = 0
4. Set ρ = ρu+ρl

2

5. Set li = μi − ρ × �
1/2
i,i

6. Set hi = μi + ρ × �
1/2
i,i

7. Give μ, �, s, l , h as input to an SI problem.

8. If |p − ∑n−k
j=0 F [j]| ≤ ε goto 11

9. If p − ∑n−k
j=0 F [j] > ε then ρu = ρ; goto 4

10. If (
∑n−k

j=0 F [j]) − p > ε then ρl = ρ; goto 4
11. Return l and h as the final confidence intervals.

There are a few considerations regarding the algorithm that warrant addi-
tional discussion. First, the procedure described above requires that a different
instance of the SI problem be solved at each iteration of the algorithm. With a
binary search algorithm of this type, 30 or so iterations of the algorithm may be
required. This may be a concern, since the SI problem can be expensive to solve
(see the next two sections). Fortunately, it turns out that in practice, almost
all of the computations required to solve the SI problem can be reused across
iterations, rendering the cost of subsequent SI solutions negligible compared
to the cost of the first one. This is due to the fact that the underlying random
variables N1, N2, . . . , Nn do not change across iterations; only the bounds li and
hi change.

Second, the algorithm as presented leaves open the question of how to choose
an initial upper bound ρu. In our implementation we choose ρu = 0.1, and until
the goto in line 9 is used, every time that the goto in line 10 is used we double
ρu rather than setting ρl = ρ. We chose ρu = 0.1 because it is close to the error
that a user might find acceptable in the final answer to the query; this tends
to reduce the number of iterations of the binary search required. However, we
point out that the initial choice of ρu is not critical, due to the exponentially-fast
convergence of the binary search and the fact that additional SI solutions (past
the first one) tend to have little cost.

4. SOLVING THE SI PROBLEM

Given the intractability of the SI problem, developing computationally feasible
methods for solving it (or approximately solving it) in a database environment
is mandatory if it is to be a practical abstraction. In this section we consider
three different methods for solving the SI problem:

(1) a Monte Carlo solution that samples directly from F in order to learn the
distribution;

(2) a second method that makes use of moment analysis and an appropriate,
parametric model for F in order to approximate it; and

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:13

(3) a related method that instead performs approximate moment analysis and
is more computationally efficient for very large instances of the SI problem.

Each of the solutions assumes that we have access to the mean μ and covariance
matrix � that are provided as input into the SI problem. In the case of the
GROUP BY query computation described in the previous section, computing μ

requires only that we compute the Haas-Hellerstrin estimate for the answer
to the GROUP BY query. However, the computation of � is substantially more
involved, and is discussed in detail in Section 5.

4.1 A Solution Using Monte Carlo Resampling

The first solution we consider approximates F via Monte Carlo sampling. We
repeatedly and directly sample from the multivariate normal or Gaussian dis-
tribution defined by μ and �. For each sample from the multivariate normal,
we compute the total penalty obtained due to incorrect intervals. F [k] is then
estimated by computing the fraction of the time that the observed penalty is
exactly k. For example, if 1000 samples are taken and a penalty of 13 was in-
curred 55 times, F̃ [13] = 0.055, where F̃ is our estimate for F . The observed
penalty for each trial or sample is computed by totaling the penalty over each
of the n variables N1, . . . , Nn. For a given trial, if Ni happens to be outside of
the range defined by li and hi, then a penalty of si is included in the total for
that trial.

While this method is fairly simple, there are a few technical questions that
need to be considered. First, we need to be able to sample from the Gaussian
distribution defined by μ and �. It turns out that there are well-known meth-
ods for this that involve first sampling a number of standard normal random
variables, using those to form a random vector, and the rotating and translating
the vector using μ and � and standard methods from linear algebra ([Dobra
et al. 2002], Section 4).

A second key question that must be answered is how many Monte Carlo
samples are required in order to obtain a sufficiently accurate approximation
for F ? In order to obtain a guideline for this number, we sample N times,2

where N is chosen so that the expected Euclidean distance from F̃ to F is less
than ε for some user-supplied ε. In other words, we take enough samples so
that

E
[∑

v
(F̃ [v] − F [v])2

]
< ε2 (10)

Computing the number of samples required so that this inequality holds re-
quires a bit of mathematics. We assume that

∑
k sk is max (that is, the to-

tal possible penalty for any given trial is max) and without losing generality
we assume that there are no negative penalties (this simplifies the exposi-
tion by allowing summations over all possible penalty values to start at 0).

2In the remainder of this section N refers to the number of Monte Carlo trials. We choose not to

subscript N in order to clarify this (using NMC , for example) in order to simplify the presentation

of the formulas. As in the previous section, Ni still refers to the ith component of the multivariate

normal that makes up the SI problem.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:14 • F. Xu et al.

Let F [v] evaluated at v = 0, 1, . . . , max be p0, p1, . . . , pmax . That is, the set
of values p0, p1, . . . , pmax answers the SI problem correctly. We then define
random variables X 1,0, . . . , X N ,max , where X u,v indicates whether or not the
total penalty incurred in the uth trial was exactly v. That is, X u,v is one if
v = ∑

k si I (Ni �∈ [li, hi]) for the uth of N multivariate Gaussian samples, and
X u,v is zero otherwise.

Note that E[X u,v] = pv for u = 1, . . . , N . That is, on expectation, X uv is
exactly the desired value pv. Thus, we have

E

[
max∑
v=0

(F̃ [v]−F [v])2

]
=

max∑
v=0

E

[(∑N
u=1 X u,v

N
− pv

)2]

=
max∑
v=0

E

[
p2

v − 2pv

∑N
u=1 X u,v

N
+

(∑N
u=1 X u,v

N

)2]

=
max∑
v=0

⎛⎝p2
v − 2p2

v + 1

N 2
E

[
N∑

u=1

X 2
u,v +

N∑
u=1

N∑
w=1w �=u

X u,v X w,v

]⎞⎠
=

max∑
v=0

(
−p2

v + 1

N 2

(
N pv + N (N − 1)p2

v

))
=

max∑
v=0

pv − p2
v

N

= 1

N

(
1 −

max∑
v=0

p2
v

)
≤ ε2 (11)

Therefore, if

N ≥ 1 − ∑max
v=0 p2

v

ε2
(12)

then the expected Euclidean distance between F and F̃ is less than ε. Note that
this is guaranteed to be the case if N ≥ 1

ε2 , because 1−∑max
v=0 p2

v is bounded by 1.
As a result, 10000 samples are enough to guarantee an expected Euclidean dis-
tance of no greater than 0.01. These methods will be considered experimentally
later on in this article.

Reusing Monte Carlo SI Computations for GROUP BY. When the SI problem
is applied to computing bounds for a GROUP BY query, the algorithm to solve the
SI problem will be invoked repeatedly to perform a binary search. Fortunately,
it is possible to reuse almost all of the computations from the first SI solution
when computing subsequent solutions, because only the bounds li and hi change
across iterations, and all bound widths are controlled by the parameter ρ (see
Section 3.3 for details). This means that subsequent SI solutions are almost
“for free,” so that the actual multivariate sampling only needs to be performed
the very first time that the SI problem is solved.

To reuse computations, we use all of the N Monte Carlo trials to build a
list of (ρ−, trialno, i) triples. Each triple means that for the specified trial, an

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:15

ρ value greater than ρ− will cause Ni to fall outside of the resulting range li
to hi. These triples are constructed for every i, and then all of them are sorted
based upon the ρ− value during the first SI solution.

Subsequently, for any given ρ, it becomes very efficient to check the corre-
sponding F̃ [k]. We scan this sorted array from front to back, and keep going as
long as ρ− does not exceed ρ. For every value of trialno, we count the number
of triples found. Let cnt be the number of trials values where the number of
triples found is k. Then returning cnt/N gives us F̃ [k] for the given value of ρ.
This process can be made even faster by precomputing summary statistics and
storing them in the array so that the entire lower end of the array need not be
rescanned for each ρ and k pair that is queried.

4.2 Solving the SI Problem Using Moment Analysis

Because it is distribution-free, Monte Carlo may be preferred, especially if the
computational resources required are minimal. However, for an SI problem
with a very large problem size—that is, with a very large number of underlying
groups or variables—the Monte Carlo method may not be practical because
it requires a large number of samples from the underlying Gaussian. Since
the generative model may have arbitrary pairwise correlations, each Gaussian
sample requires multiplying a length n vector by an n-by-n matrix, which will
be expensive if n is very large.

Thus, our second method for solving the SI problem is quite different. It
relies on calculating exactly the first and second central moments of the distri-
bution function F and then choosing an appropriate parametric distribution to
approximate F . Let ζ be a random variable whose distribution is precisely F.
Then recall from Section 2 that the first and second central moments of F are
the mean E[ζ] and variance E2[ζ] − E[ζ 2] of ζ .

The justification for resorting to such a parametric method is straightfor-
ward. Note that the valid domain of F (or range of ζ) is known and easily
computed. That is, in linear time we can easily upper-bound and lower-bound
the values of i for which F [i] can possibly have nonzero probability by comput-
ing the smallest and largest sums over subsets of the si values input into the SI
problem—the smallest possible sum is min{0,

∑
si<0 si}, and the largest possible

sum is max{0,
∑

si>0 si}, where each si is the penalty value associated with the
ith group. Given an upper bound, a lower bound, and a mean and variance,
the possible shapes that a reasonably well-behaved distribution can take are
severely constrained, and so choosing a parametric distribution that accepts
these four parameters as a surrogate for F should not incur much inaccuracy.3

As we show experimentally, the accuracy of this method is quite remarkable
when it is used in conjunction with the Beta distribution [Casella and Berger
2002], which accepts exactly this set of four parameters. The Beta distribu-
tion can take a very wide variety of shapes (see Figure 3 at left). To give the
reader an idea of how good the Beta distribution approximation is for our ap-
plication, we show in Figure 3 (right) the empirical distribution of F [k] in a

3As evidence of this, the well-known and widely-used Chevyshev’s inequality states exactly how

much just two parameters—mean and variance—constrain a distribution.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:16 • F. Xu et al.

Fig. 3. Shapes of Beta distribution (left); the empirical estimate of pdf of F [k] for 100 groups

based on 10000 Monte Carlo samples (top right); and the approximation of the pdf of F [k] using

Beta(31.123,66.6907) (bottom right).

typical scenario obtained using 10000 Monte Carlo samples together with the
approximation using Beta distribution that our method produces. The two dis-
tributions are virtually indistinguishable. The quality of the Beta distribution
for use as a solution to the SI problem will be considered experimentally in
depth in Section 6.

We note that while such parametric methods may be quite common in statis-
tics and statistical machine-learning, there may be skepticism towards such
methods in the part of data management practitioners. Guidelines on where
to use such parametric distributions can be found in the statisics literature
[Johnson et al. 1995]. If there is a concern regarding the accuracy, a princi-
pled approach to checking the accuracy of such an approximation would be to
compute or estimate the third moment and (perhaps) the fourth moment us-
ing techniques similar to those that we will present shortly. These moments
are the so-called skew and kurtosis of F , respectively. If both the skew and
the kurtosis also match the parametric model chosen, then with six matching
parameters the possible distributions are so constrained that no reasonable
statistician would ever question the applicability of the model! However, as we
will show experimentally, using the four-parameter method, it is possible to
obtain excellent results.

Of course, all of this requires that we be able to perform an appropriate
analysis on the variable ζ . Computing E[ζ] given the input to the SI problem
is a relatively easy matter:

E[ζ] =
∑

i

∫

−[li ,hi]

pi(x)si dx (13)

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:17

where pi(x) is the probability density function of the estimate associated
with the ith estimator, which is normal with mean μ[i] and variance �[i, i].
This integral for each i simply computes the probability that a trial over
Ni results in a value that incurs a penalty, and multiplies that value by
the incurred penalty in order to arrive at the expected penalty for the ith
estimate.

We next turn our attention to calculating E[ζ 2]. This is the expected squared
penalty over all i:

E[ζ 2] =
(∑

i

I (Ni �∈ [li, hi])si

)2

=
(∑

i

I (Ni �∈ [li, hi])si

) (∑
j

I (N j �∈ [l j , h j])sj

)
=

∑
i

(
I (Ni �∈ [li, hi])si

)2 +
∑

i

∑
j i �= j

I (Ni �∈ [li, hi])si I (N j �∈ [l j , h j])sj

=
∑

i

(∫

−[li ,hi]

pi(x)si dx
)2

+
∑

i

∑
j i �= j

∫

−[li ,hi]

∫

−[l j ,h j]

pi, j (x, y)sisj dx dy (14)

In this equation, we have simply broken the expected squared penalty into two
sums. The first sum considers the case where the penalty for a single Ni is
squared, and the second sum considers the case where the penalty for two dif-
ferent Ni variables is multiplied. In the equation, pi(x) is again the probability
density function of Ni, and pi, j (x, y) is the probability density function of the
bivariate normal with

μ′ = [μ[i], μ[j]]T ; �′ =
[

�[i, i] �[i, j]

�[i, j] �[j , j]

]
(15)

In other words, pi, j (x, y) is the joint density function for Ni and N j . Evaluating
this equation requires that we be able to compute the required integral over
pi, j (x, y). Fortunately, there is a good deal of existing work that considers how
to compute an integral over a bivariate normal. If Monte Carlo integration is
used [Robert and Casella 2005], then it is easily possible to reuse the SI solution
for the first iteration of the GROUP BY computation of Section 3.3 for subsequent
iterations (see below).

Applying the Beta Distribution. After calculating the first two moments,
we can then use an appropriate parametric distribution to (approximately)
calculate any F [k]. As mentioned previously, in our implementation we make
use of the four-parameter Beta distribution to serve as a surrogate for F . The
four parameters for the Beta are the two shape parameters α and β, as well
as the lower and upper bound min and max for the range of the underlying
random variable ζ .

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:18 • F. Xu et al.

If min = 0 and max = 1, straightforward calculations show that given μ(ζ)
and σ 2(ζ), α and β should be chosen so that

α = μ2(ζ) − μ3(ζ) − μ(ζ)σ 2(ζ)

σ 2(ζ)

β = μ(ζ) − 2μ2(ζ) + μ3(ζ) − σ 2(ζ) + μ(ζ)σ 2(ζ)

σ 2(ζ)

Generally min = 0 and max = 1 are not satisfied. However a simple linear
transformation can map this to a space such that min = 0 and max = 1.
The mean and variance are transferred accordingly. Assuming the mean and
variance in the original space are μ′ and σ ′2, respectively, then the following
equations hold:

μ = μ′ − min
max − min

σ 2 = σ ′2

(max − min)2

This ensures that the first two moments of the resulting distribution F̃ both
match μ(ζ) and σ 2(ζ), respectively. Given this fit, to provide our solution to the

SI problem we use F̃ [k] = ∫ k+0.5

k−0.5
Beta(x) dx.

Reusing Moment-Based SI Computations for GROUP BY. In the same way that
the Monte Carlo solution for the first iteration of the GROUP BY algorithm can be
reused, the moment-based solution can be reused to solve multiple SI problems
with the same underlying variables. Assuming that Monte Carlo integration
is used for each integral over pi, j (x, y) and pi(x), a number of samples are
taken from each pi, j (x, y) and pi(x), and the fraction of samples within each
corresponding bound is computed to approximate the integral. Using methods
very similar to those in the previous section for reusing the pure Monte Carlo
solution, these samples can be used to compute an efficient mapping from every
possible ρ to a given variance and mean for ζ . For example, consider the mean
of ζ . To handle this, a number of records of the form (ρ−, i, μ) are computed for
each i, one corresponding to each sample from pi. This record indicates that
Ni ’s contribution to the mean of ζ for ρ > ρ− is at least μ. The records are then
sorted on the ρ− values. To compute the mean of ζ for a given ρ, the records are
scanned from front to back for each ρ− that does not exceed ρ. For each i, the
last μ observed is then used to compute ζ ’s mean.

4.3 Solution Using Approximate Moment Analysis

While the previous solution may be faster than the Monte Carlo solution, it
is still linear in the size of the covariance matrix �. In the case of a GROUP BY
query, the number of entries in � is quadratic in the number of groups. Since
the number of groups may be many many thousands in a realistic scenario, a
sublinear algorithm in the size of � is highly desirable.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:19

For a very large SI problem, it is possible to increase the speed of the moment
analysis method substantially by sampling from the covariance matrix. Recall
that the first two moments of the distribution resulting from the SI problem
are given as Eqs. (13) and (14). In order to make use of the method of mo-
ments, we are typically not interested in the second uncorrected moment as
much as we are in the variance, which is related to the second moment via
the relationship σ 2(ζ) = E[ζ 2] − E2[ζ]. To write an expression for σ 2(ζ), we
define

C =
∑

i

(∫

−[li ,hi]

pi(x)si dx
)2

−
(∑

i

∫

−[li ,hi]

pi(x)si dx
)2

∑
i
∑

j i �= j
1

(16)

Then, we have

σ 2(ζ) = E[ζ 2] − E2[ζ] =
∑

i

∑
j i �= j

(∫

−[li ,hi]

∫

−[l j ,h j]

pi, j (x, y)sisj dx dy + C

)
(17)

The main reason that we define C is that in order to calculate C, we only
need to calculate the diagonal entries of the covariance matrix, a cost that
scales linearly with respect to the number of estimators. Thus we can com-
pute C exactly, and the problem of calculating the variance reduces to the
problem of computing the value of the double summation given above, which
we can estimate effectively using sampling. Assuming the total number of
estimators is n, the total number of nondiagonal entries in the double sum-
mation is m = n(n − 1). Let S be a random sample without replacement
from

T = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ m, i �= j } (18)

where |S| is the sample size and |T | = m. The following formula then gives an
unbiased estimator of the variance of ζ :

σ̃ 2(ζ) = m
|S|

∑
(i, j)∈S

(∫

−[li ,hi]

∫

−[l j ,h j]

pi, j (x, y)sisj dx dy + C

)
(19)

In order to compute how many samples from the covariance matrix are needed
to accurately estimate σ 2(ζ), we can also derive a formula for the variance of

σ̃ 2(ζ).
We define

a = m
|S|

b = m − 1

|S| − 1

h(i, j) =
(∫

−[li ,hi]

∫

−[l j ,h j]

pi, j (x, y)sisj dx dy − C

)
(20)

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:20 • F. Xu et al.

If sampling without replacement is used, the variance of σ̃ 2(ζ) is

σ 2(σ̃ 2(ζ)) =
(

a
b

− 1

) ∑
(i, j)∈T

∑
(k,l)∈T

I ((i, j) �= (k, l))h(i, j)h(k, l)

+ (a − 1)
∑

(i, j)∈T

h(i, j)2 (21)

An unbiased estimator of the variance that is only based on the samples is

σ̃ 2(σ̃ 2(ζ)) = ab
(a

b
− 1

) ∑
(i, j)∈S

∑
(k,l)∈S

I ((i, j) �= (k, l))h(i, j)h(k, l)

+ a(b − 1)
∑

(i, j)∈S

h(i, j)2 (22)

Given these formulas, we may easily design an algorithm that repeatedly sam-
ples from the nondiagonal entries in the covariance matrix and calculates the

estimated value of σ̃ 2(ζ) based on the current sample set S. The algorithm stops
sampling when the standard deviation of this estimator is less than some per-
centage of the estimated value, computed using an appropriate bound (such as
the Central Limit theorem or Chebyshev’s inequality).

The resulting algorithm is shown in Figure 4. Function GetEstimated-
Variance implements the algorithm. The first two lines initialize some vari-
ables. Lines 3 to 8 calculate the constant C given in Eq. 16. The Do . . .

While loop in lines 9 to 18 continues sampling and updating the estimated
variance using Eq. 19 until the stopping condition described above is satis-
fied. The function CalculateVariance calculates the estimated variance using
Eq. 22.

5. COMPUTATIONAL CONSIDERATIONS FOR COVARIANCE
MATRIX ENTRIES

Regardless of which one of the three methods for solving the SI problem is
used, entries in the covariance matrix must be computed. The Appendix gives
a detailed derivation of the covariance formulas and associated unbiased es-
timators for sampling multitable joins over GROUP BY queries. Unfortunately, if
one were to simply implement them directly using the obvious nested loops
computations, it would be prohibitively expensive to compute even a single en-
try in the covariance matrix. This section will consider how these formulas can
be implemented efficiently.

For ease of exposition, we will consider how to compute the covariance of
the following two queries:

SELECT sum(f1(p1, l1))
FROM PART AS p1,LINEITEM l1

SELECT sum(f2(p2, l2))
FROM PART AS p2,LINEITEM l2

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:21

Fig. 4. Algorithm to calculate the estimated variance.

In these queries, f1 computes the total aggregate value for one group, while
f2 computes the total aggregate value for a second group. f1 and f2 also com-
pute any selection and/or join conditions. Subsequently, we assume that both
functions correspond to queries that can be evaluated using a hash-join or a
sort-merge-join.

Upon examining the formulas in Appendix A, the key statistics needed to
estimate the covariance between the two estimators given above are the follow-
ing:

VTT =
∑
p1∈P

∑
l1∈L

f1(p1, l1) f2(p1, l1)

VTF =
∑
p1∈P

∑
l1∈L

∑
l2∈L,l2 �=l1

f1(p1, l1) f2(p1, l2)

VFT =
∑
p1∈P

∑
p2∈P, p2 �=p1

∑
l1∈L

f1(p1, l1) f2(p2, l1)

VFF =
∑
p1∈P

∑
p2∈P, p2 �=p1

∑
l1∈L

∑
l2∈L,l2 �=l1

f1(p1, l1) f2(p2, l2)

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:22 • F. Xu et al.

Fig. 5. Example results for query 1.

Fig. 6. Example results for query 2.

In the previous summations, P and L refer to our samples of PART and LINEITEM,
respectively. Equivalent formulas for these statistics can be obtained by making
use of the identity function I :

VT T =
∑
p1∈P

∑
p2∈P

∑
l1∈L

∑
l2∈L

I (p1 = p2)I (l1 = l2) f1(p1, l1) f2(p2, l2)

VT F =
∑
p1∈P

∑
p2∈P

∑
l1∈L

∑
l2∈L

I (p1 = p2)I (l1 �= l2) f1(p1, l1) f2(p2, l2)

VF T =
∑
p1∈P

∑
p2∈P

∑
l1∈L

∑
l2∈L

I (p1 �= p2)I (l1 = l2) f1(p1, l1) f2(p2, l2)

VF F =
∑
p1∈P

∑
p2∈P

∑
l1∈L

∑
l2∈L

I (p1 �= p2)I (l1 �= l2) f1(p1, l1) f2(p2, l2)

Note that these two relations have four statistics, where the subscript TT (for
example) requires a double summation over the result sets for f1 and f2, con-
sidering identical source record pairs. The subscript TF requires a summation
over the two result sets for nonzero f1 and f2 values where the source records
from P are the same, but those from L differ. FT is similar. The subscript FF
requires a summation over the two result sets where the source records from
both P and L differ.

In order to calculate each of these statistics, a reasonable method would
be to make use of a double summation over the result set from both of the
queries. First, we would use a hash join to compute the set of all nonzero f1

values, since those are the only ones that may contribute to the actual value for
the statistic. Then, in a similar fashion, we would use a hash join to compute
the set of all nonzero f2 values. In order to determine whether each nonzero
value can contribute to one of the statistics, for each result tuple we also need to
store the record IDs (RIDs) of the two tuples that were used to produce the value.
For example, for VFF, only those pairs of record pairs where I (p1 �= p2) and
I (l1 �= l2) both evaluate to 1 can contribute to the total; this can be determined if
we have the necessary RIDs. Once this data has been computed and stored in
an array, then a nested summation can be used to compute each statistic. For
example, consider Figures 5 and 6, which give example nonzero f1 and f2

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:23

values along with the source record IDs for the two queries. Given such a data
structure, the following algorithm then computes VFF:

Function CalculateVFF (S1,S2)
1. VF F = 0
2. For every record in S1

3. For every record in S2

4. VFF = VFF + I (p1 �= p2)I (l1 �= l2) f1(p1, l1) f2(p2, l2)
5. Return VFF

If S1 is the set of nonzero f1 values and S2 is the analogous set for f2, this
algorithm would require O(n|S1||S2|) time. For a larger number of relations,
the complexity increases quickly. In general, over n relations, the total number
of statistics required is 2n, and the time complexity for relations S1 to Sn is
O(2n ∏ |Si|).

By careful implementation, we can reduce the time complexity in the two-
relation case to to O(|S1|+|S2|) (and, by extension, we can reduce the complexity
over n relations to O(2n ∑ |Si|)). Continuing with the same example, the basic
idea is as follows:

(1) First, it is easy to calculate VT T . We simply to a hash join on both the RID’s
of PART and LINEITEM.

(2) Second, once we have calculated VT T , it is easy to calculate VT F . Let

VT∗ =
∑
p1∈P

∑
p2∈P

∑
l1∈L

∑
l2∈L

I (p1 = p2) f1(p1, l1) f2(p2, l2) (23)

Instead of checking the equality of both the pairs of RIDs from both re-
lations, VT∗ only checks the equality of the two RIDs from PART. This
can be computed efficiently using a hash join on the RID from PART.
Then, we notice that

VT∗ =
∑
p1∈P

∑
p2∈P

∑
l1∈L

∑
l2∈L

I (p1 = p2) f1(p1, l1) f2(p2, l2)

=
∑
p1∈P

∑
p2∈P

∑
l1∈L

∑
l2∈L

I (p1 = p2)(I (l1 = l2) + I (l1 �= l2)) f1(p1, l1) f2(p2, l2)

= VTF + VTT (24)

As a result, we can compute VTF as VTF = VT∗ − VTT.

(3) Third, we can calculate VF T in a similar way. We first calculate V∗T using
a hash join on the RID from LINEITEM; then, VFT = V∗T − VTT.

(4) Finally, it is easy to calculate V∗∗ = VTT+VTF+VFT+VFF. This is equivalent
to calculating ∑

p1∈P

∑
l1∈L

f1(p1, l1)
∑
p2∈P

∑
l2∈L

f2(p2, l2) (25)

This calculation only requires a single scan of both S1 and S2. Then,

VFF = V∗∗ − VTT − VTF − VFT (26)

The time complexity is O(|S1| + |S1|) for each step. Therefore, the overall time
complexity is O(|S1| + |S1|).

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:24 • F. Xu et al.

We illustrate the process with an example. S1 and S2 are shown in Figures 5
and 6, respectively. By executing each step, we have

VTT = 4

VT∗ = 39

V∗T = 42

V∗∗ = 126

Therefore,

VTF = 39 − 4 = 35

VFT = 42 − 4 = 38

VFF = 126 − 4 − 35 − 38 = 49

It is not hard to extend this idea to any number of relations. For example, if the
two queries both have three relations, the first step is to calculate VTTT using
a hash join on the RIDs from all three relations. The next step is to calculate
VT T∗, VT∗T , and V∗TT. We can then get VTTF, VTFT, and VF T T . Similarly, we
calculate VT∗∗, V∗∗T , and V∗T∗ which allows us to obtain VTFF, VFFT, and VFTF.
Finally, we calculate V∗∗∗ and use this to compute VFFF. The only difficulty is
that we need to apply the inclusion/exclusion rule carefully to ensure that no
values are double-counted. For example, if we want to calculate VTFF, we notice
that VT∗∗ = VTTT + VTTF + VTFT + VTFF. In order to compute VTFF, we need to
subtract the other three totals from VT∗∗.

6. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the utility of the SI-based simulta-
neous GROUP BY bounds. There are two questions we consider. First, the purpose
of sampling from a database is to obtain an approximate answer quickly. How-
ever, the additional computation required to produce the simultaneous GROUP BY
bounds will require extra time, which may perhaps mitigate the benefit of sam-
pling. Thus, the first question we wish to address is: For each of the three
methods that we have proposed, how high is the time required to obtain the SI-
based simultaneous GROUP BY bounds compared to the time required to execute
the query over the entire database?

Second, all three methods that we have proposed are approximate methods,
and do not solve the SI problem exactly. Therefore, the second question we
wish to address is: How well do these three methods bound the correctness of
an approximate GROUP BY answer in reality?

6.1 Running Time Experiments

To evaluate the utility of the SI-based simultaneous GROUP BY bounds, we are
interested in three different times:

(1) the time to complete the query over the entire database;

(2) the time to complete the query over a sample set in order to produce an
approximate answer; and

(3) the time to compute simultaneous confidence bounds using the SI problem.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:25

If sampling is useful for reducing the running time of a query, we would expect
that the summation of the last two times to be much smaller than the first
time. Otherwise, we should simply answer the query exactly. In the ideal case,
we would also expect the third time to be much smaller than the second one,
so that the simultaneous confidence bounds are produced at no extra cost com-
pared to the time required to estimate the answer. However, even if the third
time is larger than the second one, this only indicates that there is room for
improvement and does not preclude the use of our methods, because the total
sampling time may still be less than evaluating the query exactly.

6.1.1 Experimental Setup.
(a) Query and Schema Tested. In our experiments, the following SQL

statement is used:

SELECT SUM(o.Profit)
FROM Order o, Employee e, Branch b
WHERE o.EmpID = e.EmpID AND e.OfficeID = b.OfficeID
GROUP BY b.BranchID

The three relations in the query are

Order(EmpID, Profit, Other)
Employee(EmpID, OfficeID, Other)
Branch(BranchID, OfficeID, Other)

The Other field in each table refers to other possible attributes that could
appear. In our experiments, this field is occupied by a random string so that
the total size of each record is 100 bytes. We set up the query so that the join
between Order and Employee is a primary-key to foreign-key join, and the join
between Employee and Branch is a many-to-many join.

(b) Parameters. In this set of experiments, we want to test how different pa-
rameters may affect the three times described above. The parameters we con-
sider are the database size, the skewness of the attributes in the join operation,
the number of groups in the query, and the sampling ratio.

The database size determines the size of each relation. For simplicity, we will
treat the size of the largest relation Orders as being approximately the same as
the database size. The sizes of relations Employee and Branches are 0.1 and 0.01
times as large as the size of relation Orders. We test 10 GB, 1 GB and 0.1 GB
databases. The default database size is 10 GB. Given the fact that the size of
each record is 100 bytes, the default number of records in Orders, Employee,
and Branches in a 10 GB database is 100 million, 10 million, and 1 million,
respectively.

The skewness of the join attributes affects the join in two ways: first, a
join operation takes more time if the join attributes are skewed; and sec-
ond, the correlations between different groups increase as the skewness in-
creases. We use a zipf coefficient to control the skewness of the three at-
tributes Employee.OfficeID, Branch.OfficeID, and Order.EmpID. The default
zipf coefficient is 0.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:26 • F. Xu et al.

The number of groups defines the number of distinct values for the attribute
Branch.BranchID, which appears in the GROUP BY clause of the query. This pa-
rameter does not affect the first two times much because the grouping operation
is near the end of query execution. However, increasing the number of groups
increases the number of concurrent estimators, and therefore increases the size
of the covariance matrix that is input into the SI problem. Thus the time to solve
the SI problem is affected. The default number of groups is 100.

The sample ratio determines the number of samples obtained from the
database. Given the fact that all other parameters are fixed, increasing the
sample ratio increases the sample size. Thus, both the second and third times
described above should be affected. We sample so that if we obtain a p% sample
from Orders, we will obtain a 5p% sample from Employee, and a 20p% sample
from Branches. By default, we obtain a 1% sample from Orders. The sampling
without replacement policy is used in each experiment.

(c) Data Generation. Given a set of parameter values, we generate the data
set relation by relation. First, records in Order are generated as follows:

(1) A Profit is randomly generated uniformly between 1 and 100.

(2) An EmpID is produced by a zipf distribution with a domain size 0.1 times
as large as the number of records in Order, and a zipf coefficient specified
by the skewness of the join attributes. Because the total number of records
in Employee is 0.1 times as large as the total number of records in Order,
we generate EmpID from this domain to guarantee that the primary-key to
foreign-key join between Order and Employee over EmpID is preserved.

(3) A random string is generated to make the size of the record 100 bytes.

Second, records of relation Employee are generated. For each record, the follow-
ing steps are performed:

(1) A unique EmpID is assigned (from 1 to 0.1 times as large as the number of
records in Order). EmpID is then the primary key of Employee, and guarantees
the domain of EmpID in Employee and Order are the same to preserve the
correctness of the primary-key to foreign-key join.

(2) An OfficeID is produced by a zipf distribution with a domain size 0.01
times as large as the number of records in Order, and a zipf coefficient
specified by the skewness of the join attributes. We generate OfficeID from
this domain for both Employee and Branch to preserve the correctness of the
many-to-many join between these two relations over OfficeID.

(3) A random string is generated to make the size of the record 100 bytes.

Third, records of relation Branch are generated. For each record, the following
steps are performed:

(1) An OfficeID is produced by a zipf distribution with a domain size 0.01 times
as large as the number of records in Order, and a zipf coefficient specified
by the skewness of the join attributes. This preserves a many-to-many join
between Employee and Branch over OfficeID. Furthermore, this domain is
as large as the total number of records in Order.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:27

(2) A BranchID is randomly selected (uniformly distributed) from value 1 to the
total number of groups.

(3) A random string is generated to make the size of the record 100 bytes.

(d) Hardware and Software. All the experiments are run over a DELL desktop
with an Intel core-dual 1.8G CPU and 2GB memory using Open SUSE Linux
10.1.4 Postgres 8.15 is used as the backend DBMS to store all the data and
perform queries (both queries over the whole database and queries over the
samples). The codes are written in C++ and compiled using gcc 4.1.0. Libpqxx
2.6.76 is used to connect PostgreSQL in C++. GSL1.97 is used for scientific
computation and random number generation.

(e) Experimental Procedure. We prepare four different sets of databases and
samples for the experiments. Each time, we fix three parameters using the
default values and vary the fourth. In the first set of experiments we vary
database size to generate 100MB, 1GB, and 10GB databases. In the second set
of experiments we generate different data sets using zipf coefficients 0, 0.3,
and 0.6. In the third set of experiments we generate data sets with 100, 1000,
and 10000 groups. In the last set of experiments we generate a database and
obtain three different samples using sample ratios 0.5%, 1%, 2% for Order.
The two other relations follow the rule described above. For each database and
sample generated, we then run the experiments five times using each of the
three proposed solutions to the SI problem and compute the average of the five
runs.

In each experiment, the time required to solve the SI problem includes ex-
actly the time required to compute F once the join over the sample has been
computed and is sitting in main memory.

The samples used in each experiment were precomputed and stored within
the database. Since the samples were relatively small with respect to the avail-
able main memory, it is reasonable to assume that they were buffered entirely
within main memory by the database system and did not need to be read from
disk.

6.1.2 Results. The results are shown in Figure 7. Running times are given
in seconds. Numbers are rounded to the nearest second. When the number
of groups is 10000, both the moment analysis method and the Monte Carlo
resampling method do not finish in a reasonable time, resulting in an N/A in
the figure. This is because these two methods require operations over a 10000-
by-10000 covariance matrix, which is not possible using our hardware.

In order to put the sample sizes that we tested into some sort of context,
the 95% confidence interval width for sample ratio 0.5%, 1%, and 2% averaged
43%, 20%, and 8% of the estimated answer, respectively, if all other parameters
take their default value. Thus, a 2% sample produces errors that are less than
10% (which should be quite reasonable for many data exploration applications)

4http://www.opensuse.org.
5http://www.postgresql.org.
6http://pqxx.org.
7http://www.gnu.org/software/gsl.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:28 • F. Xu et al.

Fig. 7. Running time under different parameter values.

and the error bounds seem to shrink by one-half or more with a doubling of the
sample size.

6.1.3 Discussion. Several interesting results can be observed, we point out
a few significant ones here.

First, we notice that the time to actually compute the sample-based esti-
mate increases approximately linearly as the sample ratio increases (which is
expected), while the time required to solve the SI problem is generally indepen-
dent of the sample size.

Second, the running time for Postgres to complete the query over the entire
database is from around 16 minutes to more than 8 hours. On the other hand,
Postgres never needed longer than a minute to compute an approximate query
answer over the samples in the worst case. Thus, sampling itself seems to be a
valuable method in terms of reducing computation time, even over multitable
joins.

Third, as long as the number of groups is 100, even for the slowest method
(Monte Carlo resampling), we notice that the running time to produce simulta-
neous GROUP BY confidence intervals in the worst case is only 20% as long as the
running time to execute the query over the entire database when the data has

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:29

no skew. If the data is very skewed, this extra time is only 2% as long as the
query time. This indicates that all three methods are valuable for 100 groups
or less. However, when the number of groups is 1000, Monte Carlo resampling
takes around 20 times as long as the running time to execute the query over
the entire database, and thus is not practical to use. Both moment analysis and
approximate moment analysis still require less time than the time to execute
the query over the entire database. When the number of groups is 10000, the
only practical method is approximate moment analysis.

We notice that the third time for both the moment analysis and the Monte
Carlo resampling method is generally larger than the time to complete the
query over the samples. This indicates that these two methods are not ideal,
though they are still useful. However, the approximate moment analysis
method was nearly ideal in terms of its computational time. Most of the time,
the time to obtain simultaneous GROUP BY bounds was much smaller than the
time to compute the query result over a sample. The only time where this was
not the case was when there were 10000 groups (the computation required 57
seconds). However, even in this case, the method takes just 4 times as long as
it does to compute the query result over the sample, and it takes just 1/20 as
long to obtain the simultaneous bounds as it does to compute the exact result.
Therefore approximate moment analysis can be used virtually for free in most
cases in terms of the extra computation that is required.

Finally, we acknowledge that our experiments consider what is really the best
possible scenario for the application of sampling: an arbitrary, ad hoc query
is issued for which no precomputed computation is available. This favorable
scenario is the main reason for the orders-of-magnitude speedup associated
with sampling. In other scenarios, such as an incremental scenario where a
user drills down into an already-computed answer set, sampling may look much
less attractive. Still, the results do convincingly show that when sampling is
applicable, computing SI-based simultaneous bounds should not be much more
expensive than simply using the underlying sample to compute an estimate.

6.2 Correctness Experiments

6.2.1 Experimental Setup. In this section we experimentally evaluate the
correctness of our three methods for solving the SI problem, including the ap-
plicability of the parametric solutions.

Testing the correctness of any confidence bound is nontrivial, and is generally
done using Monte Carlo methods. For example, a traditional p% confidence
bound tells us that a parameter of interest is within a specified range p% of the
time. A Monte Carlo experiment to check the correctness of such a confidence
bound would rerun the computation that produced the bound N independent
times, and see if approximately p

100
× N out of the N times the bounds contain

the true answer. Under this regime, we can treat each repetition as a coin flip
where we observe a heads when the bound contains the true answer, and a tails
otherwise. If the confidence bound computation is correct, the total number of
observed heads would follow a binomial distribution given by Binomial (N , p

100
).

As long as the actual number of observed heads is within a two-sided binomial

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:30 • F. Xu et al.

confidence interval computed using Binomial (N , p
100

), we can be reasonably
sure that this confidence bound is correct.

It is more challenging to design a test for our three solutions to the SI prob-
lem. In the case of a GROUP BY query, for a given set of confidence bounds, the
solution to the SI problem is a function F such that for any given k, F [k] is
the probability of observing k incorrect intervals. For example, if k = 12 and
F [k] = 0.25, we expect 25% of the time to observe 12 incorrect bounds. Thus, if
p ≈ ∑k

i=0 F [i], then the SI solution asserts that the probability of observing k
or less incorrect bounds is p.

For a given p, a Monte Carlo experiment can be designed to check the correct-
ness of an SI solution by repeating the following procedure N times indepen-
dently. First, we obtain a sample from the database tables and use that sample
to estimate the result to a GROUP BY query. For each group, we construct a 95%
confidence interval using the sample and solve the resulting SI problem. Using
F , we find k such that the probability of observing k or less incorrect bounds is
p. We then calculate the actual number of incorrect intervals by computing the
actual answer of the query over the entire database and then counting the total
number of intervals that do not contain the answers for the associated group.
The “coin flip” associated with this SI solution is a heads if the actual number
of intervals is less than or equal to k, and a tails otherwise. Therefore, if the
method to solve the SI problem is correct, the total number of heads in N inde-
pendent repetitions follows a binomial distribution given by Binomial (N , p).
As long as the actual number of observed heads is within a two-sided binomial
confidence interval, we have strong evidence that the method for solving the SI
problem is correct.

To actually implement such an experiment, we use the same query described
in the previous section:

SELECT SUM(o.Profit)
FROM Order o, Employee e, Branch b
WHERE o.EmpID = e.EmpID AND e.OfficeID = b.OfficeID
GROUP BY b.BranchID

We build four different data sets for this experiment. In the first data
set, all parameters take their default values. In the second data set, the sample
ratio is changed to 0.5%. In the third data set, the skewness is changed to
0.3. In the fourth data set, the skewness is changed to 0.3, and the number
of groups is changed to 20. For each of our three methods (Monte Carlo
resampling, moment analysis, and approximate moment analysis), and for
each of four data sets, we perform the procedure described above for p in
{0.05, 0.10, . . . , 0.90, 0.95}, and N = 100.

6.2.2 Results. The results we observed are given in Figures 8, 9, 10, and 11.
The figures show the 12 results observed using the three different SI solutions
and four different data sets. The x axis in each figure is the p tested. The
y axis (shown as a bar) is the total number of heads we observed out of 100
trials. The error bar over each bar is the two-sided 95% confidence interval of

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:31

Fig. 8. Correctness of three methods over dataset one: all parameters use their default values.

The error bar is a 95% two-sided confidence interval from the corresponding binomial distribution

Binomial (100, p), where each p value is shown in the x axis.

Fig. 9. Correctness of the three methods over dataset two: except for the fact that the sampling

ratio is set to 0.5%, the three other parameters use their default values.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:32 • F. Xu et al.

Fig. 10. Correctness of three methods over dataset three: except for the fact that the skew is set

to 0.3, the three other parameters use their default values.

Fig. 11. Correctness of the three methods over data set four: 20 groups and a skew of 0.3 are used.

Binomial (100, p). In order to compute the interval, we compute the inverse
cumulative distribution function values of probabilities 0.025 and 0.975 from
Binomial (100, p) and treat them as lower bound and upper bound, respectively.

6.2.3 Discussion. If the SI solutions were unreliable in practice, we would
expect to observe a number of heads outside the two-sided 95% confidence

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:33

Fig. 12. Correctness obtained assuming independence on data set four. The right plot shows the

difference between the SI solution obtained using independence (the solid line) and the Beta ap-

proximation (the dashed line).

interval of Binomial (100, p) more than 5% of the time. In actuality, we ob-
served that only 7 out of 240 results were outside of the two-sided 95% con-
fidence interval of Binomial (100, p). Therefore, we have strong evidence that
the three methods for solving the SI problem do in fact produce correct and
reliable results.

Furthermore, this low rate of error was observed for all three of the methods,
including the two parametric solutions that rely on the Beta distribution—in
fact, the rate of errors for the parametric, Beta-based solution was actually
lower than for the nonparametric Monte Carlo method. This seems to be strong
evidence for the assertion that using the four parameters in the parametric
solution (lower bound, upper bound, mean, and variance) does constrain the
space of possible distributions so much that a parametric assumption is quite
reasonable, and seems to discount the need for a parametric solution that takes
into account even higher moments such as the skew and kurtosis.

Finally, we note that while the results obtained in this set of experiments do
seem to argue convincingly that the SI-based solution to the GROUP BY problem
is accurate in practice, they do not necessarily mean that the SI-based solution
is actually necessary in practice. It is still reasonable to ask “How dangerous
would it be to simply ignore the correlations among groups, and assume that
all groups are independent?”

Our first step toward answering this question is to repeat the procedure de-
scribed above, while ignoring the correlations among the groups. Recall that
in the Monte Carlo experiment, we first obtained a sample from the database.
Then for each group, we constructed a 95% confidence interval using the sam-
ple. If we assume that the intervals are independent, then the probability
of seeing that exactly k bounds are incorrect follows a Binomial distribution
Binomial (m, 0.05), where m is the total number of groups and 0.05 is the prob-
ability of seeing a single interval wrong. Thus, if we assume independence, the
binomial distribution can be used to provide a very simple “solution” to the SI
problem by using F [k] = ∑k

i=0 Prob(Binomial (m, 0.05) = i). Figure 12 shows
the accuracy obtained with this binomial “solution” to the SI problem, using
exactly the same experimental setup for the other SI problem solutions with p

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:34 • F. Xu et al.

in {0.05, 0.10, . . . , 0.90, 0.95}, and N = 100 over the fourth data set (the skew-
ness is 0.3, the number of groups is 20). We see that for large p values, the
observed value tends to be below the 95% error bar. For example, for p = 0.6,
the 95% error bar covers the range from 50 to 70, but the observed value is only
around 45.

Unfortunately, these results do not clearly demonstrate the extent to which a
user can be mislead when the independence assumption is used to communicate
the accuracy of a Group by querying the user. In Figure 12, if the independence
assumption were valid, the total number of times that we would observe that
the actual count of incorrect intervals is smaller than or equal to a given k
(where F [k] = p) should be approximately p × 100. This figure shows that for
larger p values, the number of times that the count of incorrect intervals does
not exceed k tends to be smaller than p×100. Thus, for a fixed k, when using the
independence assumption we will obtain a estimated probability of seeing k or
more incorrect intervals that are too small. The problem is that Figure 12 does
not show exactly the extent to which this probability can be underestimated.

In order to investigate exactly how this probability is underestimated, we ar-
bitrarily choose one of the 100 Monte Carlo trials from Figure 12, and plot the
probability of seeing k or more incorrect groups obtained by using our Beta ap-
proximation, as well as the same probability obtained using the independence
assumption. The results are shown on the right side of Figure 12. We only plot
the tail portion of the cumulative density function because observing a large
number of incorrect groups is the most worrisome outcome for the user of a
sampling-based estimate. The figure shows that the probability of seeing 14 or
more incorrect groups out of 20 is around 0.002 using our Beta approximation,
which means that this can actually happen around once per 500 query execu-
tions. This is not insignificant, and not communicating this may be dangerous.
However, when using the independence assumption, the computed probability
is very close to 0. If a user takes this result at face value, he or she will assume
that there is no chance of observing that the observed query result is largely
useless.

Finally we point out that we generated the data using mild zipf skew in order
to induce some correlations among the groups. In reality, correlations among
groups can be much more significant than those induced by the zipf distribution.
Thus the difference between the two probabilities can be even more significant
in practice than what we show here, making the assumption of independence
even more problematic in practice.

7. FUTURE WORK AND APPLICABILITY TO OTHER ESTIMATION PROBLEMS

In this article we have concentrated on sampling-based estimates for
SUM/GROUP BY queries. However, many of the methods considered in this article
are quite general and applicable to a much wider class of estimation problems
than what we have considered here. To maintain focus and brevity, we have
chosen not to consider these other applications in depth, and leave them to
future work. However, we do give some hints in this section, as to how the SI
problem can be applied beyond SUM/GROUP BY queries.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:35

For example, it is not too difficult to extend our methods to deal with
AVERAGEes over GROUP BY queries. An AVERAGE query is nothing more than a
ratio of a SUM query to a COUNT query (which is itself a SUM query over a set
of values that are always one). In this case, the definition of the SI problem
must be changed slightly. Rather than having a single, normally-distributed
random variable Ni associated with each estimate, there are two random vari-
ables Nnum

i and Nden
i associated with the ith estimate—the first is associated

with the SUM in the numerator of the AVERAGE query and the second with the
COUNT in the denominator. The goal then becomes to infer the distribution of
the number of times that the random variable

Nnum
i

Nden
i

is outside of the range li
to hi, given the covariances among all of them. Assuming sampling-based es-
timation, the Central Limit theorem still applies to each individual Nnum

i and
Nden

i . Since each individual variable is still normal, the methods considered in
Section 4 are still applicable to solving the resulting, modified SI problem, with
some slight modifications. For example, the Monte Carlo solution can easily
be used by repeatedly sampling Nnum

1 , Nden
1 , Nnum

2 , Nden
2 , . . . , Nnum

n , Nden
n and

counting the number of times that
Nnum

i

Nden
i

is outside of the specified range. The

two moment-based methods are also easily applied, though now the central

task is computing the probability that both of the
Nnum

i

Nden
i

,
Nnum

j

Nden
j

pairs are outside
of their respective bounds for an arbitrary i and j .

It also seems possible to use the SI problem to produce a sampling-based
estimate to so-called correlated aggregate queries. The following is an example
correlated aggregate query:

SELECT SUM(EMP.SALARY)
FROM EMP
WHERE EMP.SALARY > (

SELECT SUM(SALE.PRICE - PROD.COST)
FROM SALE, PROD
WHERE SALE.PROD=PROD.PROD AND
AND SALE.EID=EMP.EID)

Such queries are characterized by a predicate over an inner aggregate query
that is correlated with an outer aggregate query. This particular query finds
the total salary “wasted” on employees who don’t produce enough revenue to
pay for themselves. One way to speed evaluation of this sort of query is to
sample the SALE and PROD tables so that the predicate over each employee is
evaluated approximately. Assuming that the SALE table is the largest database
table and the join between SALE and PROD is expensive, this can speed query
evaluation significantly. However, it then becomes unclear whether each
employee should be included in the final total, and the distribution of the
“penalty” or error incurred by including one or more employees when they
should not be included (or vice-versa) can be calculated as an instance of the SI
problem.

For another example of where the SI problem may be applied, consider a
top-k GROUP-BY query where the goal is to compute an aggregate over the k
“best” groups, where “best” is measured via the application of some aggregate

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:36 • F. Xu et al.

function over the group. If the database is sampled, then the aggregate total
over each group is only an estimate, and computing the total error resulting
from the inclusion (or exclusion) of groups that should not (or should) be there
can likely be posed as an instance of the SI problem.

8. RELATED WORK

While not studied in the context of databases, the study of simultaneous or mul-
tiple inference has a long history in statistics. The classical reference material
is Miller’s book [Miller 1981]. Some newer summaries of the field are books by
Hochberg and Tamhane [Hochberg and Tamhane 1987], Westfall and Young
[Westfall and Young 1993], and Hsu [Hsu 1996].

Most results regarding simultaneous inference are related to hypothesis test-
ing, which is the process of using observed data to make decisions about un-
observed parameters of interest. In a hypothesis test, the tester defines a null
hypothesis, a test statistic, and a cutting value. The null hypothesis is an as-
sumption that an effect or result we may be interested in confirming is not true
(for example, we may be interested in determining whether an HIV drug is
effective; the natural null hypothesis assumes that the drug is not in fact effec-
tive). Once the null hypothesis is formulated, a test statistic is calculated using
the observed data. The test statistic is used to compute the p-value, which is the
probability that a test statistic would be obtained assuming the null hypothesis
were true. If the p-value is less than the cutting value p, the null hypothesis
is rejected. This results in a Type-I or false positive rate of p. The so-called
Type-II error is the probability of not rejecting a null hypothesis that is in fact
false, and describes the power of the test.

In multiple hypothesis testing, rather than dealing with a single null hypoth-
esis, one instead has a large number of hypotheses that are to be evaluated using
the same data. The problem is that since the same data is used for each test,
an error on one test may increase the chance of an error on another. The easi-
est way to handle such potential correlations is to adjust the p-value associated
with each test so that the overall chance of erroneously rejecting a hypothesis is
kept manageable. There are a number methods for doing this: so called “single-
step” procedures such as the classic Bonferroni procedure [Miller 1981] and
Sidak’s procedure (both outlined nicely in Dragici [2003]), “step-down” proce-
dures such as Holm’s procedure [Holm 1979], and “step-up” procedures such as
Hochberg’s procedure [Hochberg 1988]. Essentially, given a vector of p-values,
these methods all attempt to reject some of the corresponding hypotheses so
as to guarantee that the probability of making any Type-I is less than p. They
vary in power (Type-II error) and how they decide to associate a cutting value
with each p-value to be able to guarantee a low enough Type-I error. In practice,
all of these methods tend to be rather conservative.

Despite the wealth of related work from statistics, only relatively recently
have statisticians begun to address issues similar to those considered in this
article. One common characteristic of all of the classic statistical methods for
simultaneous inference (as well as those discussed thus far) is that the goal is
to control the so-called “family-wise error rate”; that is, they seek to control the

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:37

probability of falsely rejecting any of the hypotheses. In this sense, these meth-
ods are very restrictive compared to the SI problem, which can be used to control
the probability that any number of estimates are incorrect. Only in the last few
years have statisticians considered related questions. Work (from a statistics
point of view) that is considered groundbreaking in its attempt to address this
is due to Benjamini and Hochberg [1995], who seek to control the expected
fraction of rejected hypotheses that are actually valid in general-purpose hy-
pothesis testing. This is somewhat similar to our approach in providing “safe”
bounds for GROUP BY queries, where the user is allowed to specify an error rate
for the different confidence intervals. Perhaps the work from statistics that is
closest to our own is the recent (and also well-known) contribution of Storey
[2002], who considers the problem of computing the expected error rate for a
given set of p-values. In a sense, this is related to the SI problem itself in that
we are attempting to infer the distribution of this statistic for a given confidence
region.

Both the work of Benjamini and Hochberg and that of Storey has seen sig-
nificant follow-up work. But while this new line of research in the statistical
literature is related to the methods proposed in here, the differences are sig-
nificant. First, there is the obvious difference that our emphasis is on database
estimation problems. Beyond this, it would be incorrect to assert that this ar-
ticle is a straightforward application of existing work from statistics. In one
sense, our work is more targeted, in that it deals specifically with confidence
regions over normally distributed estimates where covariances are easily esti-
mated, as one would expect in a database environment. The work of Storey and
Benjamini and Hochberg and later follow-up research deals with general-
purpose hypothesis testing and an unknown covariance structure. In another
sense, our work generalizes this existing work in that we allow an arbitrary
penalty value to be associated with each incorrect interval. Another key dif-
ference is that our work has a distinctly computational focus. Our interest
is in efficiently scaling the analysis to tens of thousands of simultaneous esti-
mates computed from millions of data points that are then joined using complex
database operations. This computational emphasis is far from what one finds
in the statistics literature.

This article has generally been concerned with database sampling. The study
of sampling has a very long history in databases, with most prior research
focusing on how to employ sampling in a relational database. Early work on
using samples to produce estimates for answers to database queries is due
to Hou et al. [1988, 1989]; Lipton et al. [1990], and many others. Early on,
researchers also developed methods to obtain random samples from database
files, with the most notable work due to Olken and Rotem [1989] and Olken
et al. [1990].

However, the study of sampling specifically for the answer to GROUP BY queries
is actually rather limited in the database literature. Acharya et al. [2000] pro-
posed the use of so-called congressional samples to approximately answer GROUP
BY queries with high accuracy. Congressional samples combine both uniform
and precomputed nonuniform samples to maximize the accuracy of answer-
ing a GROUP BY query. However, Acharya et al.’s work tackles a quite different

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:38 • F. Xu et al.

problem from what we have considered here. Their focus was on increasing
estimate accuracy, while we focus on accurately describing estimate accuracy.
Hellerstein et al. [1997] also considered sampling for GROUP BY queries, and
proposed the index striding technique that controls the sampling rates of the
various groups so as to maintain fairness in the amount of system resources
devoted to each group. This method is based upon the observation that the
number of records in each group can be different, so it may be important to
sample small groups more heavily than big ones. Charikar et al. [2000] ad-
dressed the problem of estimating the number of distinct values over a database
table column, which is equivalent to estimating the number of groups while
grouping over this column. In fact, sampling for GROUP BY queries was the mo-
tivation for their work, since they sought a method to give the user an idea of
how many groups were present in the database, in case not all of the groups
had been encountered in the sample. Charikar et al. proved that any esti-
mator for this problem cannot guarantee a small error bound for all popu-
lation distributions, unless a large portion of the records in the table are pro-
vided. They provide an optimal estimator that matches their lower error bound,
and also provide several heuristic estimators that can work better for specific
distributions.

9. CONCLUSION

We have considered in depth the statistical issues that must be addressed if a
single sample is used to answer a GROUP BY query. The problem is that since the
same sample is used for each group, it is unacceptable to use classic, univariate
methods to quantify error since the groupwise estimates are not independent—
if one bound is wrong, then it may be likely that all of the bounds are wrong.
Statistically speaking, univariate bounds are only valid in isolation, and once
a user has seen one of them he or she needs to forget about that bound be-
fore looking at the next one. Since this is unreasonable in practice, we have
considered what information should be given to the user to safely quantify the
accuracy of a GROUP BY query result, and also discussed in depth how to compute
such information efficiently.

APPENDIX

A. Covariance Analysis

This section considers the problem of how to formally analyze the variance of
a single query and the covariance for two queries using the Haas-Hellerstein
estimator [Haas and Hellerstein 1999] for SUM queries over one or more database
tables.

A.1 Analysis for SUM Over Two Database Tables

It is natural to begin by considering a SUM query over two database tables.
Specifically,

SELECT SUM (f (R, S))
FROM R, S

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:39

Note that the function f can encode any mathematical function over pairs
from R and S (including a COUNT query). As discussed in Section 2, the above
query may be used to perform the computation required for a single group in a
GROUP BY query if f limits the sum to only those tuples belonging to the group
in question.

Let fi(R, S) denote the function for estimator M̃i that returns the value of
f (R, S) if the tuple (R, S) belongs to the ith group, and returns zero otherwise.
We denote by NR and NS the number of tuples of relations R and S, respectively.
Furthermore, we denote by R ′ and S′ the samples from R and S, respectively,
and use nR and nS for their respective sizes. In order to perform the analysis,
it is helpful to introduce Bernoulli (zero/one) random variables that indicate
whether tuples from relations are not/are in the sample. Let X k and Yl be
variables that indicate whether the kth and lth tuples from R and S are in R ′

and S′, respectively. With this, the ith natural Haas-Hellerstein estimator of
the aggregate is

M̃i = NR

nR

NS

nS

NR∑
k=1

NS∑
l=1

X kYl fi(k, l) (27)

where the double sum is really a sum over the tuples of R ′ and S′ expressed
using the Bernoulli variables.

Before we can characterize the estimate M̃i, we need to derive some useful
properties of the random variables X k and Yl . We present the necessary results
and proofs only for X k ; the results for Yl are obtained simply by substituting
Yl for X k and S for R in all equations. First, some notation:

αR = NR

nR
; βR = NR − 1

nR − 1
(28)

In the developments that follow we could have used the Kronecker delta symbol
[Jermaine et al. 2005], instead, we introduce a function that leads to more
intuitive formulas:

ρk,k′ (t) =
⎧⎨⎩1 k = k′ ∧ t = 0

1 k �= k′ ∧ t = 1
0 otherwise

(29)

Intuitively, this function allows us to turn on/off terms that have equal/not
equal values for the indices k, k′ based on value of the variable t. The following
properties of ρk,k′ function will be used extensively:

PROPOSITION A.1. For any function F(k, k′), we have

∀k, k′,
1∑

t=0

ρk,k′ (t) = 1 (30)

∑
k

∑
k′

ρk,k′F(k, k′) =
{ ∑

k F(k, k) t = 0∑
k
∑

k′ �=k F(k, k′) t = 1
(31)

1∑
t=0

∑
k

∑
k′

ρk,k′F(k, k′) =
∑

k

∑
k′

F(k, k′) (32)

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:40 • F. Xu et al.

PROOF. To prove the first identity, we observe that irrespective of whether
k = k′, ρk,k′ (t) takes value 1 for one t ∈ {0, 1} and value 0 for the other, thus the
sum is always 1. The second identity follows directly from the definition of ρ by
observing that some terms vanish since they have 0 coefficient due to ρ. The
third identity follows directly from the second, since the two cases in Eq. (31)
are summed up and they complete the double sum.

With these, we now have the following result that characterizes the Bernoulli
random variables:

PROPOSITION A.2. If R ′ is a sample without replacement of R, then for the
kth tuple of R we have

E [X k] = 1

αR
(33)

ρk,k′ (t)E [X k X k′] = ρk,k′ (t)
1

αRβt
R

(34)

PROOF. The expected value of a zero/one random variable is the probability
of the variable taking the value 1; in this case 1

αR
is the probability that the kth

tuple of R is in R ′. When k = k′, since X 2
k = X k , E [X k X k′] is 1

αR
. When k �= k′,

E [X k X k′] = P [X k = 1 ∧ X k′=1] = P [k ∈ R ′]P [k′ ∈ R ′|k ∈ R ′]. Since the condi-
tional probability is 1

βR
, then E [X k X k′] = 1

αRβR
. Using the definition of ρk,k′ (t),

the two cases can be easily encoded as in the statement of the proposition. Note
that ρ has to appear on the right side as well as on the left side to ensure the
right side is 0 whenever the left side is.

In the formulas derived subsequently, a particular set of terms appear that
deserve special attention. We introduce and characterize them first.

For tR , tS ∈ {0, 1} and the ith, j th estimators, we define

PtR ,tS =
NR∑
k=1

NS∑
l=1

NR∑
k′=1

NS∑
l ′=1

ρk,k′ (tR)ρl ,l ′ (tS) fi(k, l) f j (k′, l ′) (35)

Depending on values of tR and tS , these terms can be rewritten using the second
identity in Proposition A.1 as sums of the form fi(·) f j (·). For example,

P0,1 =
NR∑
k=1

NS∑
l=1

NS∑
l ′=1,l ′ �=l

f i(k, l) f j (k, l ′) (36)

An extra property of these terms is given by

PROPOSITION A.3.

1∑
tR=0

1∑
tS=0

PtR ,tS =
NR∑
k=1

NS∑
l=1

NR∑
k′=1

NS∑
l ′=1

fi(k, l) f j (k′, l ′) (37)

PROOF. The proof follows directly from the second identity in Proposition A.1
and simple reorganization of the sums.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:41

THEOREM A.4. For any arbitrary estimators M̃i and M̃ j given by Eq. (27),
we have

E
[
M̃i

] =
NR∑
k=1

NS∑
l=1

fi(k, l) (38)

Cov
(
M̃i, M̃ j

) =
1∑

tR=0

1∑
tS=0

(
αR

β
tR
R

αS

β
tS
S

− 1

)
PtR ,tS (39)

PROOF. Using linearity of expectation and the first identity in Proposi-
tion A.2, the unbiasedness of the expectation of M̃i follows immediately.

To compute the covariance, we first estimate E
[
M̃i M̃ j

]
.

E
[
M̃i M̃ j

] = α2
Rα2

S

NR∑
k=1

NR∑
k′=1

NS∑
l=1

NS∑
l ′=1

E [X k X k′] E [Yl Yl ′] fi(k, l) f j (k′, l ′) (40)

To rewrite this term, observe that by multiplying each term within the summa-

tion by
∑1

tR=0 ρk,k′ (tR) and
∑1

tS=0 ρl ,l ′ (tS) (both these multipliers are 1 by the first
identity in Proposition A.1 thus they do not change the identity) and regrouping
the sums, we obtain

E
[
M̃i M̃ j

] = α2
Rα2

S

1∑
tR=0

1∑
tS=0

NR∑
k=1

NR∑
k′=1

NS∑
l=1

NS∑
l ′=1

ρk,k′ (tR)E[X k X k′ρl ,l ′ (tS)E [Yl Yl ′] fi(k, l) f j (k′, l ′) (41)

Now, using the second identity in Proposition A.2 and the definition of PtR ,tS

we get

E
[
M̃i M̃ j

] =
1∑

tR=0

1∑
tS=0

αR

β
tR
R

αS

β
tS
S

PtR ,tS (42)

Using now the fact that Cov (M̃i M̃ j) = E[M̃i M̃ j]− E[M̃i]E[M̃ j] and the result
in Proposition A.3 we obtain the required result.

Note that the above result does not require that i and j be different; thus,
the result applies to the case when i = j . This will give us the variance of M̃i.

A.2 Analysis for SUM over Multiple Database Tables

We now extend the previous result to an arbitrary number of database tables.
We assume that T1, T2, . . . , Tk are k database tables, and consider the queries
of the form

SELECT SUM (f (T1, T2, . . . , Tk))
FROM T1, T2, . . . , Tk

Just as before, we let fi(T1, . . . Tk) be a function that returns f (T1, . . . Tk) if
the tuple (T1, . . . , Tk) belongs to group i, and 0 otherwise. The numbers of

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:42 • F. Xu et al.

tuples in these tables are N1, N2, . . . , Nk , respectively. In addition, it is also
assumed the sample sizes are n1, n2, . . . , nk , respectively. We define Bernoulli
random variables X w1, . . . X wkthat will govern whether or not the wth tuple
from T1, . . . , Tk are sampled, respectively. The following then serve as the ith
estimator for the sums of f :

M̃i = N1 . . . Nk

n1 . . . nk

∑
w1,...,wk

X w1 . . . X wk fi(w1, . . . , wk) (43)

As in the previous section, in order to derive the covariance of M̃i and M̃ j , for
u in 1 to k we have

αu = Nu

nu
; βu = Nu − 1

nu − 1
(44)

Pt1,...,tk =
N1∑

w1=1

N1∑
w′

1=1

. . .

Nk∑
wk=1

Nk∑
w′

k=1

k∏
u=1

ρwu,wu′ (tu) × fi(w1, . . . , wk) f j (w′
1, . . . , w′

k)

(45)

THEOREM A.5. The covariance for multiple database tables. The co-
variance of M̃i and M̃ j is

Cov
(
M̃i M̃ j

) =
1∑

t1=0

. . .

1∑
tk=0

(
k∏

u=1

αu

β
tu
u

− 1

)
Pt1,...,tk (46)

PROOF. The proof mirrors the proof of Theorem A.4. k terms of the form∑1
tu=0 ρwu,wu′ (tu) are multiplied with terms in the multiple summation of the ex-

pansion of E
[
M̃i M̃ j

]
, then the results in Propositions A.2 and A.1, the defini-

tion of Pt1,...,tk , the generalization of Proposition A.3 and summation regrouping
give the required result.

Although the analysis above was performed in the context that all the rela-
tions are used for each query, the queries do not need to operate over the same
set of input relations.For example, imagine that query Q1 computes a sum over
f1 and operates over relations T1 and T2, and Q2 uses f2 and operates over
T2 and T3, where both use the same sample from T2. In such a situation, the
analysis may be used by re-writing both queries to operate over the union of
the set of input relations (T1, T2, and T3). Q1 would be changed to compute the
sum over a function f1

′(t1, t2, t3) = f1(t1, t2)/|T3|, and Q2 would use the function
f2

′(t1, t2, t3) = f2(t2, t3)/|T1|.

A.3 An Unbiased Covariance Estimator

In order to compute the covariances using the formulas described above, it is
necessary to have access to the entire database table (which is obviously not
feasible if sampling is performed). As a result, it is useful to obtain an unbiased
estimator for the covariance of two estimators, given only the sample that is
used to estimate the answer to the query.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

Confidence Bounds for Sampling-Based GROUP BY Estimates • 16:43

Consider the following estimator:

C̃ov(M̃i, M̃ j) =
1∑

t1=0

. . .

1∑
tk=0

(
k∏

u=1

αu

β
tu
u

− 1

)
k∏

v=1

αvβ
tv
v

×
N1∑

w1=1

N1∑
w′

1=1

. . .

Nk∑
wk=1

Nk∑
w′

k=1

ρw1,w′
1
(t1) . . . ρwk ,w′

k
(tk)

× X w1
X w′

1
. . . X wk X w′

k
fi(w1, . . . , wk) f j (w′

1, . . . , w′
k) (47)

It is simple to prove that this estimator is unbiased for the covariance of two
estimators. To show this, we note that the expected value of

N1∑
w1=1

N1∑
w′

1=1

. . .

Nk∑
wk=1

Nk∑
w′

k=1

ρw1,w′
1
(t1) . . . ρwk ,w′

k
(tk)

× X w1
X w′

1
. . . X wk X w′

k
fi(w1, . . . , wk) f j (w′

1, . . . , w′
k) (48)

is

1∏k
v=1 αvβ

tv
v

Pt1,...,tk (49)

Therefore, the expected value of C̃ov(M̃i, M̃ j) is the covariance of M̃i and M̃ j .

REFERENCES

ACHARYA, S., GIBBONS, P., POOSALA, V., AND RAMASWAMY, S. 1999a. Join synopses for approximate

query answering. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’99). ACM, New York, 275–286.

ACHARYA, S., GIBBONS, P. B., POOSALA, V., AND RAMASWAMY, S. 1999b. The aqua approximate query

answering system. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’99). ACM, New York, 574–576.

ACHARYA, S., GIBBONS, P. B., AND POOSALA, V. 2000. Congressional samples for approximate an-

swering of group-by queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’00). ACM, New York, 487–498.

BENJAMINI, Y. AND HOCHBERG, Y. 1995. Controlling the false discovery rate: A practical and pow-

erful approach to multiple testing. J. Royal Statisti. Soc. 57, 289–300.

CASELLA, G. AND BERGER, R. L. 2002. Statistical Inference. 2nd Ed. Duxbury. CAS g2 02:1 1.Ex.

CHARIKAR, M., CHAUDHURI, S., MOTWANI, R., AND NARASAYYA, V. R. 2000. Towards estimation er-

ror guarantees for distinct values. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. ACM, New York, 268–279.

CHAUDHURI, S., DAS, G., AND NARASAYYA, V. 2001. A robust, optimization-based approach for ap-

proximate answering of aggregate queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’01). ACM, New York, 295–306.

DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R. 2002. Processing complex aggregate

queries over data streams. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’02). ACM, New York, 61–72.

DRAGICI, S. 2003. Data Analysis Tools for DNA Microarrays. Chapman and Hall, CRC Press.

GANTI, V., LEE, M.-L., AND RAMAKRISHNAN, R. 2000. Icicles: Self-tuning samples for approximate

query answering. In Proceedings of the 26th International Conference on Very Large Data Bases
(VLDB’00). Morgan Kaufmann, 176–187.

GIBBONS, P. B. AND MATIAS, Y. 1998. New sampling-based summary statistics for improving ap-

proximate query answers. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’98). ACM, New York, 331–342.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

16:44 • F. Xu et al.

HAAS, P. J. AND HELLERSTEIN, J. M. 1999. Ripple joins for online aggregation. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD’99). ACM, New

York, 287–298.

HELLERSTEIN, J. M., AVNUR, R., CHOU, A., HIDBER, C., OLSTON, C., RAMAN, V., ROTH, T., AND HAAS, P. J.

1999. Interactive data analysis: The control project. Computer 32, 8, 51–59.

HELLERSTEIN, J. M., HAAS, P. J., AND WANG, H. J. 1997. Online aggregation. In Proceedings of the
ACM SIGMOD Conference on Management of Data (SIGMOD’97). ACM, New York, 171–182.

HOCHBERG, Y. 1988. A sharper bonferroni procedure for multiple tests of significance.

Biometrika 75, 800–802.

HOCHBERG, Y. AND TAMHANE, A. C. 1987. Multiple Comparison Procedures. Wiley, New York.

HOLM, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat 6, 65–70.

HOU, W.-C., ÖZSOYOGLU, G., AND TANEJA, B. K. 1988. Statistical estimators for relational algebra

expressions. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’88). ACM, New York, 276–287.

HOU, W.-C., ÖZSOYOGLU, G., AND TANEJA, B. K. 1989. Processing aggregate relational queries with

hard time constraints. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’89). ACM, New York, 68–77.

HSU, J. 1996. Multiple Comparisons: Theory and Methods. Chapman and Hall, CRC Press.

JERMAINE, C., DOBRA, A., ARUMUGAM, S., JOSHI, S., AND POL, A. 2005. A disk-based join with prob-

abilistic guarantees. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’05). ACM, New York, 563–574.

JOHNSON, N. L., KOTZ, S., AND BALAKRISHNAN, N. 1995. Continuous Univariate Distributions Vol. 2,

Wiley, New York.

LIPTON, R. J., NAUGHTON, J. F., AND SCHNEIDER, D. A. 1990. Practical selectivity estimation through

adaptive sampling. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’90). ACM, New York, 1–11.

MILLER, R. G. 1981. Simultaneous Statistical Inference, 2nd ed. Springer, Berlin, Germany.

OLKEN, F. AND ROTEM, D. 1989. Random sampling from b+ trees. In Proceedings of the Conference
on Very Large Data Bases (VLDB’89). 269–277.

OLKEN, F., ROTEM, D., AND XU, P. 1990. Random sampling from hash files. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD’90). ACM, New York,

375–386.

ROBERT, C. P. AND CASELLA, G. 2005. Monte Carlo Statistical Methods. Springer, New York.

SARNDAL, C., SWENSSON, B., AND WRETMAN, J. 1992. Model Assisted Survey Sampling. Springer,

Berlin, Germany.

STOREY, J. D. 2002. A direct approach to false discovery rates. J. Royal Statist. Soc. Series B 64,

479–498.

WESTFALL, P. AND YOUNG, S. 1993. Resampling-Based Multiple Testing. Wiley, New York.

Received August 2006; revised June 2007, December 2007; accepted April 2008

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 16, Publication date: August 2008.

