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ABSTRACT
A judiciously normalized database schema can increase data inter-
pretability, reduce data size, and improve data integrity. However,
real world data sets are often stored or shared in a denormalized
state. We examine the problem of automatically creating a good
schema for a denormalized table, approaching it as an unsupervised
machine learning problem which must learn an optimal schema
from the data. This di�ers from past rule-based approaches that
focus on normalization into a canonical form. We de�ne a princi-
pled schema optimization criterion, based on Occam’s razor, that
is robust to noise and extensible—allowing users to easily specify
desirable properties of the resulting schema.We develop an e�cient
learning algorithm for this criterion and empirically demonstrate
that it is 3 to 100 times faster than previous work and produces
higher quality schemas with 1/5C⌘ the errors.
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1 INTRODUCTION
The bene�ts of schema normalization are well-known: it decreases
data redundancy, reducing storage requirements; it makes data
integrity constraints easier to enforce; and it can improve the in-
terpretability and usability of the data when tables in the schema
correspond tomeaningful domain concepts. However, often a single,
denormalized table is easier to share and query. Thus, a common
challenge when beginning an analysis or data modeling project
is to decompose a denormalized data set into a good normalized
schema. This can be di�cult and time consuming to do manually.
∗This work was done while the authors were employed at Tableau Software.
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To address this, we tackle automatically recovering a lossless,
normalized, snow�ake-shaped schema from a denormalized input
table. We propose a probabilistic, machine learning model and an
accompanying unsupervised learning algorithm with advantages in
robustness, quality, and speed over existing methods. Speci�cally,

(1) It chooses a quantitatively best schema from a broad search
space, naturally selecting schemas that are more likely to
contain interpretable entities and relationships.

(2) It is robust to randomness in the data, handling both false
negatives (functional dependencies obscured by noise in the
data) and false positives (functional dependencies in the data
that do not correspond to real-world dependencies).

(3) It provides a principled method to prefer schema with desir-
able properties, like the existence of simple candidate keys.

(4) It can be orders of magnitude faster than existing methods.
Our approach achieves this by directly optimizing a principled

measure of schema quality. This di�ers from existing schema nor-
malization methods which focus on satisfying technical conditions
imposed by canonical normal forms, but which do not necessarily
lead to concise, well-organized schemas. Further, satisfying these
conditions requires discovering functional dependencies in the data,
an expensive task that our approach avoids.

In this paper, we make several methodological and theoretical
contributions. We show how to apply Occam’s razor, the principle
that the simplest explanation is often the best, to the schema learn-
ing problem, leading to a principled schema quality metric. We then
embed this approach in a Bayesian probabilistic framework that
makes it easy to optimize for additional desirable schema properties,
such as having concise primary keys. Coupled with these contri-
butions, we develop an e�cient algorithm for �nding the optimal
schema. We run experiments on real-world datasets demonstrating
substantial improvements in robustness, quality, and speed.

2 RELATEDWORK AND CHALLENGES
Standard methods for manual schema normalization [4, 6, 10] rely
on a two-stage process of (1) specifying functional dependencies
(FDs) that hold in a relation and (2) using these FDs to decom-
pose the relation to a desired normal form. Papenbrock and Nau-
mann [30] leverage recent progress in FD discovery algorithms
to automate this process, producing lossless snow�ake schemas
in Boyce-Codd Normal Form (BCNF). Kenig et al. [20] relax the
snow�ake requirement by �nding approximate Multivalued Depen-
dencies, then using them to produce lossy acyclic schemas.

We �nd two practical challengeswith these two-stage approaches.
First, a small number of errors in a data set can obscure functional
dependencies making it impossible to recover important entities,
and, conversely, accidental dependencies often occur by chance,
leading to normalized schemas with tables that do not correspond to
real world entities (Figure 1). This latter issue is unsurprising as the
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ID T��� U���ID N���
1 )1 *1 Joe
2 )2 *1 Joe
3 )2 *3 Joe
4 )3 *2 Sue
5 )4 *2 Sue
6 )5 *1 Joe
7 )6 *3 Jo

(a) Denormalized table, D (error on line 7)

ID T��� ��
1 )1 A1
2 )2 A1
3 )2 A3
4 )3 A2
5 )4 A2
6 )5 A1
7 )6 A4

Z

U���ID N���
*1 Joe
*2 Sue
*3 Joe
*3 Jo

(b) Desired normalization, despite error

ID U���ID ��
1 *1 A1
2 *1 A2
3 *3 A2
4 *2 A3
5 *2 A4
6 *1 A5
7 *3 A6

Z

T��� N���
)1 Joe
)2 Joe
)3 Sue
)4 Sue
)5 Joe
)6 Jo

(c) Semanticallymeaningless normalization

Figure 1: Example of di�culties in schema learning from data dependencies. Given D, we would like to learn the schema in (b)
(the foreign key column references the row number in the second table), but an error in row 7 (“Jo” instead of “Joe”) obscures the functional
dependency between U���ID and N���. Further, T���, due to its high cardinality, inadvertently functionally determines N��� (but not
U���ID), which can result in two-stage normalization approaches producing the schema in (c), incorrectly separating U���ID and N���.

number of potential FDs, and hence the number of accidental depen-
dencies, grows exponentially with the number of columns. While
previous work developsmethods for �nding approximate dependen-
cies [16, 21, 36] and ignoring spurious dependencies [7, 23, 24], how
these methods and their hyperparameters can be calibrated so that
the resulting FDs are meaningful for automated schema normal-
ization remains unexplored. Current schema normalization meth-
ods [30] try to mitigate the problem of accidental dependencies by
applying heuristics to prioritize FDs; however, this results in lower
quality schemas than those found by our method. Second, enumer-
ating data-derived dependencies remains computationally costly
despite continued algorithmic advances [1, 12, 16, 22, 26, 29, 34, 35].
In two-stage approaches, most of this computation is wasted as the
vast majority of functional dependencies found in the search stage
will not be used later in normalization.

We instead use an information theoretic approach to identify
an optimal schema. Previous work [2, 20, 21, 24, 30, 36] has used
information theoretic approaches to measure and exploit depen-
dence between columns. However, these works make the traditional
assumption that all rows in the data are independent draws from
a single, �xed underlying distribution. In our work, each table in
a normalized schema corresponds to a di�erent random distribu-
tion. Rows in the denormalized table are drawn from these shared
distributions. These rows are correlated since changing one of the
underlying distributions changes multiple rows. Our model can be
seen as exploiting the dependence of columns and rows to deter-
mine a better schema decomposition. From a statistical perspective,
our approach learns a graphical model with a tree structure, similar
to the Chow-Liu algorithm [9]. However, it di�ers from Chow-Liu
and past literature on structure learning [11, 18] which also assume
rows are independent and identically distributed.

Our work has a side e�ect of producing a compressed repre-
sentation of the input data, so is also related to table compression
methods. Previous work models the joint distribution over columns
[14, 31] and captures �ne-grained dependencies [15, 17] to produce
a more e�cient encoding, while our method captures dependencies
that are useful for schema normalization.

3 SCHEMA LEARNING OVERVIEW
In contrast to FD-driven approaches to schema learning, we formu-
late schema learning as an unsupervised machine learning problem

that directly searches for an optimal schema. This requires three
components: (1) an optimization search space that includes plausi-
ble schemas, (2) a principled objective function that assesses the
quality of a schema, and (3) an algorithm that can solve the opti-
mization problem e�ciently.

Section 4 describes our optimization search space—conceptual
snow�ake schemas, in which tables are de�ned, but primary keys are
not identi�ed. This space is shown to be equivalent to a multilevel
clustering of the columns. To evaluate schema quality, Section 5
shows how Occam’s razor can be used to derive a principled objec-
tive function based on the minimum description length (MDL) that
naturally rewards schemas that more concisely capture the entities
within the data. We then develop this into a Bayesian model that
provides a formulaic means for users to incorporate other desirable
schema properties into the objective.

However, the resulting optimization problem is non-trivial. The
optimization is over a discrete space that grows super-exponentially
in size with the number of columns, and the objective function is
expensive to evaluate. Section 6 provides an e�cient algorithm
that combines branch-and-bound, dynamic programming, and a
greedy heuristic. This yields exact optimization of moderately sized
problems and approximate solutions for large problems. Section 7
showswe obtain both higher quality results than the state-of-the-art
and runtimes up to 2 orders of magnitude faster. To avoid technical
details in the exposition, we defer all proofs to the appendix.

4 OPTIMIZATION SEARCH SPACE
Given a denormalized table, our goal is to search for a normalized
schema where its tables represent interpretable real-world entities.
The search space must be broad enough to capture such schemas,
but also restricted enough to make optimization tractable. Acyclic
schemas havemany good properties for datamodeling [5]. However,
the space of such schemas is large and, in practice, they seldom ad-
mit lossless join decompositions in the presence of noise or missing
rows. Instead, we focus on the more restricted space of snow�ake
schemas which is also used in previous work [30]. By snow�ake
schema, we mean a schema with an entity-relation diagram that
forms an n-ary rooted tree with many-to-one relationships from
parent tables to children. In contrast to general acyclic schemas,
the restricted space of snow�ake schemas always admit trivial loss-
less join decompositions even for noisy data. Further, snow�ake
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Figure 2: Conceptual and logical schemas. A single concep-
tual snow�ake schema (left) can be represented as multiple logical
schemas (top right) based on the choice of primary key (colored).
To avoid the cost of selecting a primary key, our approach only
searches over schemas which use the physical row index as the key
(bottom right). This row primary key column is implicit and does
not need to be materialized.

schemas can often use junction tables to model many-to-many and
one-to-many relationships in acyclic schemas, reducing the gap
in representational power. Finally, we observe that denormalizing
many-to-many relationships results in an explosion in data size;
thus, we believe that denormalized tables from acyclic schemas are
less likely to arise in practice than from snow�ake schemas.

In FD-based schema normalization, primary keys for the result-
ing schema are identi�ed as part of the normalization process. The
left side of a FD used to split out a table de�nes a primary key
for that table. In contrast, we do not try to identify a primary key
from the set of candidate keys during the search. To generate a
lossless join decomposition without identifying primary keys, we
simply use row numbers to link tables (Figure 2). This approach
is motivated by two considerations. First, a concise primary key
for an entity may not exist in the denormalized table or it may
be corrupted by noise. Using row numbers as a stand-in for the
primary key allows our algorithm to robustly handle these cases.
Second, not identifying primary keys simpli�es the search space.
Since we do not need to duplicate input columns to create FK-PK
pairs, each column in the input table appears exactly once in the
output schema. This means that a snow�ake schema can be seen
as a hierarchical partitioning of the input columns. In Section 6, we
leverage this property to create an e�cient algorithm for �nding an
optimal schema. (Note that a primary key detection algorithm [19]
could be run afterwards to add primary keys to our schemas.)

While we have constrained our search space to make the op-
timization problem more tractable, the space is still large. Since
our space of snow�ake schemas is equivalent to that of hierarchi-
cal partitionings of the input columns, the search space is super-
exponential in the number of columns,<.

T������ 1. Let Γ be the set of snow�ake schemas in the search
space of our optimization function. The space of schemas grows super-
exponentially, and log|Γ|= Ω(< log<).

This is substantially larger than the space of possible functional
dependencies. So, compared to previous work, we’ve nominally
increased the di�culty of the problem. However, this optimization
framing permits more e�cient algorithms and better normalization.

5 OPTIMIZATION OBJECTIVE
We next present our optimization objective using two perspectives—
an information theoretic one and a statistical one. The information
theoretic perspective is simple and tied to the familiar database
concept of physical design. Inspired by Occam’s razor, we posit that
schemas that lead to simpler descriptions of the data are generally
better. To quantify simplicity, we use the number of bits needed to
store the data. Since a schema in�uences the physical layout of the
data, and hence its size in bits, each schema can be assigned a mea-
sure of simplicity—the size of the data when losslessly decomposed
according to the schema—and an optimal schema can be chosen
that minimizes that measure.

Rather than measuring the data size using a particular encoding
scheme or compression algorithm, we use the information theoretic
entropy since it is a lower bound on the data size. This is incor-
porated into a minimum description length measure that includes
the both the size of the decomposed data as well as the size of the
compression codes and any necessary metadata.

This information theoretic approach converts the problem of
schema learning into an optimization problem, but it is heuristic in
nature, and focuses on only one bene�t of schema design—reduced
storage. So we also present a second perspective using probabilistic
generative models that formalizes and generalizes the method, al-
lowing us to extend our objective to capture other bene�ts of good
schema design, such as the existence of simple primary keys.

In particular, our information theoretic approach is a speci�c
instance of a statistical modeling and model selection problem.
Since the de�nition of entropy is E?(- ) log2 ?(- ), the information
theoretic approach requires making assumptions about and esti-
mating an underlying probability distribution. By �rst identifying
the underlying generative model for each schema, we can extend it
to a Bayesian model where each schema is assigned a probability
representing the belief that a given schema is the correct one.

5.1 Information Theoretic Interpretation
Each possible snow�ake schema,S, in our search space corresponds
to a lossless join decomposition of the input data, D. Our goal is
to select the schema which best captures the structure—the enti-
ties and relationships—within the data. Applying the intuition of
Occam’s razor suggests that schemas that correspond to simpler
and more compact join decompositions better capture the structure
of the input data. We can formalize this intuition as a minimum
description length (MDL) objective, � , of the form:

�"⇡!(S|D) := !4=6C⌘(D|S) + !4=6C⌘(S) (1)

where !4=6C⌘(D|S) is the length of the data when stored in the join
decomposition determined by S, and !4=6C⌘(S) is the length of the
schema. This objective favors join decompositions that concisely
represent the data, while penalizing overly complex schemas.

To make this objective concrete, !4=6C⌘(D|S) is total size of the
tables in the schema’s join decomposition. We assume that both
data and foreign key columns are stored with an ideal entropy



encoding; thus, the size of each column, 2 , is its empirical entropy,
� (2), times the number of rows in its corresponding table, =C :

Length(D|S) :=
X

C 2)1;B(S)

X
22⇠>;B(C )

=C · � (2) (2)

The length of a schema, !4=6C⌘(S), is the total cost of storing the
compression codes for each column in the join decomposition (in-
cluding any foreign key columns):

!4=6C⌘(S) :=
X

C 2)1;B(S)

X
22⇠>;B(C )

V · |Ω2 | = V

 X
C 2S

=C

!
+ 2>=BC (3)

where Ω2 is the set of unique values in column 2 and V represents
the cost of storing one code entry. The simpli�cation into the total
number of rows in the schema follows from the fact that only the
domains of FKs can di�er between schemas.

While this metric is based on the compressed length of the input
data, our goal is not only compression. The key MDL-based insight
is that a schema which compresses the data well must necessarily
also concisely capture the important structure in the data.

5.2 Probabilistic Interpretation Overview
Under the information theoretic interpretation in the previous sec-
tion, our approach �nds the schema that minimizes data size. In this
section, we give an equivalent probabilistic interpretation, under
which our approach �nds the schema which has the maximum
regularized likelihood of generating the input denormalized table.

This framing provides a better understanding of the assumptions
made by the MDL objective, a way to cast the model selection prob-
lem as a pure optimization problem that can be solved e�ciently,
and a framework for incorporating prior information about the
true schema. We note that optimization-based model selection with
complexity penalties are not new and can sometimes be viewed as
approximations to fully Bayesian methods [33].

Our goal is to produce a good posterior distribution ?(S|D)
over possible schema given the data. Similar to the information
theoretic MDL objective, this posterior can be maximized to �nd
an optimal, maximum a posteriori (MAP) schema. Building this
posterior requires two components, a generative model that de�nes
the likelihood of the data given a schema, ?(D|S), and a prior, c (S),
that prefers schema with good properties. The resulting posterior
distribution is ?(S|D) / ?(D|S)c (S) by Bayes’ rule.

To create a generative model, we can treat a snow�ake schema
as a hierarchical graphical model which encodes the conditional
dependence between sets of columns (Figure 3). This leads to a
straightforward generation procedure where parent tables are gen-
erated conditional on their children. However, to form a full gen-
erative hierarchical model, an additional set of parameters, d , are
needed to specify how to generate the data within each table. Since
only the schema is of interest in schema learning, these d are called
nuisance parameters.

Thus, in our probabilistic interpretation we must (1) specify the
full generative distribution ?(D|S, d), (2) deal with the nuisance pa-
rameters d , and (3) specify a prior distribution, c (S). In Section 5.3,
we show that the MDL objective given in Equation 1 is equivalent
to a speci�c solution for each of these issues. Then in Section 5.4,
we leverage our probabilistic framework to extend our objective to
include useful prior information.

F�F� F�
Q�

F� F�
Q�

�� � �

F� F� F�
Q�
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WDEOH� WDEOH�

WDEOH�

Figure 3: Graphical model for a schema with 3 tables, 6 data
columns (c1–c6) and 2 foreign key columns (c7 and c8). Nuisance
parameters d de�ne the distribution of values in each column. A
denormalized table can be generated from this model by �rst gener-
ating table1 and table2, then independently drawing n3 entries for
column - 1

·,1 from distribution d1 and n3 tuples from 21 and table2
with probabilities d7 and d8 respectively. Here, column 2 9 in table
C is the same as - C

· 9 in the normalized dataset.

5.3 Probabilistic Interpretation Details
To generate a denormalized table, -̃ , from a schema, S, we treat
the schema as a hierarchical graphical model, as illustrated in Fig-
ure 3. (We use -̃ here to distinguish a random denormalized table
drawn from our model from the observed data D). Our generation
procedure works by drawing a table instance - C for each table C in
the schema S; these tables are then joined create -̃ . The number
of rows =C for each - C is considered �xed in the model as is the
domain Ω2 of each column 2 . The unknown parameters are proba-
bility distributions d2 for each column 2 , which can be either data
columns or foreign key columns. We draw a table, - C , with the
following data generating process:

• For each data column 2 in C , independently draw =C inde-
pendent values from the distribution d2 . In other words,
- C
82

883⇠ d2 for 8  =C .
• For each foreign key column 2 in C , similarly draw - C

82
883⇠ d2

for 8  =C .
The denormalized table, -̃ , is formed by joining the all the - C . The
likelihood of this table can be written as:

?(-̃ |S, d) =
Y

C 2Tbls(S)

Y
22Cols(C )

=CY
8=1

d2 (- C
82 ). (4)

While the representation using FKs leads to all columns in - C

being independent, the graphical model in Figure 3 represents the
process for generating the denormalized table -̃ . If tables 1, 2, and
3 respectively represent customer, stores, and transactions, then
each transaction row’s information can only be �lled out once its
customer’s and store’s information are known.

Maximizing the log of this likelihood is equivalent to minimizing
a portion of the MDL objective.



T������ 2. Under the above generative model, a schema, S, has
a maximum log-likelihood of

��"!⇢ (S|D) := sup
d
✓(S, d ;D) = �!4=6C⌘(D|S) (5)

where d = {?2 (·|S)}22⇠>;B(S) encodes every column’s empirical dis-
tribution.

Here, the log-likelihood is de�ned by ✓(S, d ;D) := log?(D|S, d)
and turns the conditional probability, which is a function of the
data, into a function of the parameters. Maximizing over the nui-
sance parameters d turns it into a objective function on the schema
only. For each column 2 , the d2 that maximizes this log-likelihood
is the observed, empirical distribution of the column after normal-
izing the data into schema S. For example, in Figure 1b’s schema,
the distribution over N��� assigns probability 1/4 to ’Jo’, not the
probability 1/7 given in the denormalized table in Figure 1a.

This generative formulation lets us cast schema learning as
Bayesian estimation problem and allows us to inject prior beliefs
about the correct or best schema. If the prior on the schema, S,
does not depend on the nuisance parameters, c0(S, d) / c (S), then
we obtain a more general form of the MDL objective.

� (S|D) := �max
d

log2 ?(S, d |D) = �"!⇢ (S|D) � log2 c (S) (6)

The MDL objective from the previous section, �"⇡! , is recov-
ered when the prior depends only on the length of the schema:
log2 c (S) = �!4=6C⌘(S) + 2>=BC .

5.4 Constructing useful priors
Priors allow us to tune our objective to favor schemas with useful
properties beyond having a short description length. However, the
form in Equation 6 is too general, providing no guidance on how
to encode useful properties or how to scale the prior and allowing
for priors that can make optimization di�cult. In this section, we
provide templates for generating priors that allow for e�cient
optimization of the objective and have a meaningful interpretation
that aids practitioners when setting the parameters.

Given a schema, S, and table, C 2 )1;B(S), let ⇡̃C denote the table
reconstructed by joining C and its descendants. To enable e�cient
optimization of the objective, we consider log priors of the form:

log2 c (S) =
X

C 2)1;B(S)
6(?0A4=C (C ), D̃C ). (7)

Our learning algorithm performs a hierarchical partitioning of the
columns, and priors of this form utilize only the information avail-
able immediately before and after a partitioning step. We note
that priors of this form include those of the form log2 c (S) =P
C 2)1;B(S) 6(C ) which looks only at individual tables and not rela-

tionships in the schema.
Our basic setup treats the negative log prior,� log2 c , similarly to

a soft constraint in an optimization problem. A penalized objective
that discourages a table C from having property P is given by
�"!⇢ (S|D) + _I(C 2 P) where _ � 0 and I(C 2 P) is the indicator
function that is 1 when C satis�es % and 0 otherwise. Since the
objective is increased anytime C has the unwanted property % , such
schemas are at a disadvantage at being picked.

We consider 3 useful log priors of this form that serve di�erent
purposes. These (1) penalize tables with undesirable properties, (2)

discourage splits, and (3) encourage desirable splits:

log2 c (S) = �
X

C 2)1;B(S)
W · I(C 2 P) · =C (Table penalty)

log2 c (S) = �
X

C 2)1;B(S)
W · I(⇡̃C 2 P) · =?0(C ) (Discourage)

log2 c (S) =
X

C 2)1;B(S)
g · I(C 2 P) · =C log2 =C (Encourage)

where W > 0 and g 2 [0, 1) are user speci�ed weights. Note that
for the split discouragement prior, the indicator can only check
properties about ⇡̃C , which contains no information about what
columns are further split out, rather than properties about C .

The row count terms scale the parameters W and g to have intu-
itive interpretations under the MDL and Bayesian frameworks. The
penalties with W are equivalent to adding a column with entropy
W to either the table or its parent. The encouragement scaling g
eliminates the fraction g from the overhead of creating a new table.
The behavior of rewarding a property by reducing the overhead
distinguishes it from penalization methods and makes it not ex-
pressible as a soft constraint. Although the table penalty can mimic
the encouragement behavior by applying a penalty when some
property is not satis�ed, the penalty has a side e�ect of strengthen-
ing the MDL prior, which may not be desirable. This is since the
default behavior of penalizing by the number of rows is precisely
what the MDL penalty does in Equation 3.

We note that other prior forms can also support e�cient opti-
mization. For example, in some cases, it may be sensible to apply
a constant penalty when a property is satis�ed or use some other
scaling that grows sublinearly with the table size. Similarly, the
indicator function could be replaced with a smooth function.

Given a collection of priors, log2 c8 , in one of the forms in Equa-
tion Table penalty, we can combine them to form our �nal prior,

log2 c (S) =
X
P

log2 c8 (S) + 2>=BC . (8)

We de�ne a canonical prior to be one of this form with an additional
constraint that the sum over the scaling parameter g8 for encour-
agement priors satis�es gC>C = P

8 g8 2 [0, 1). Later, in Theorem
4, we show that such priors lead to an e�cient optimization algo-
rithm. The following examples demonstrate properties that can be
captured with the above priors:

Example 1: Columns with names sharing a common pre�x likely
come from the same source entity. This can be encoded as a table
penalty when the columns do not appear together. If the columns
sharing a common pre�x are F , then the property can be checked
by setting I(C 2 P) = I( |F \⇠>;B(C )| 62 {0, |F |} ).

Example 2: Columns commonly queried together are likely from
the same entity. This scenario is similar to Example 1 but uses a
di�erent set of columns for F . In this case, it may be sensible to set
the scaling parameter, W , proportional to the number of times the
columns are queried together. This allows workload or performance
information to in�uence the choice of schema.

Example 3: Tables are likely to have a simple candidate key. This
can be encoded using a combination of encouragement and discour-
agement priors. A discouragement prior penalizes creating a table
with no simple candidate keys. An encouragement prior rewards



creating a table with a simple candidate key, even if it has a close
to 1-to-1 relationship with the parent and does not substantially
reduce the redundancy in the data.

6 LEARNING ALGORITHM

Algorithm 1: SSL����
Input: Denormalized table, D
Output: Optimal snow�ake schema, S

Memoized Function Optimize(D):
// Initialize queue and upper bound with empty schema
let q = new Priority�eue(orderby = � (S))
q.push({S: ;, ⇠?0A4=C : [], ⇠2⌘8;3 : [], ⇠C08; : ⇠>;B(D)})
let upper = UpperBound(;,D)
while q is not empty do

let {S, ⇠?0A4=C , ⇠2⌘8;3 , ⇠C08; } = q.pop()
// If all columns have been partitioned, return
if ⇠C08; = [] then

return S
// Apply bounds to prune search space
if LowerBound(S, Π+

⇠C08;
D) > upper then

continue
// Otherwise, branch on next column in table
[2⌘403 | ⇠ 0

C08; ] = ⇠C08;
// Branch with 2⌘403 partitioned to parent table
⇠ 0
?0A4=C = append(⇠?0A4=C , 2⌘403 )

S0 = Normalize(D, ⇠ 0
?0A4=C , ⇠2⌘8;3 )

q.push({S0, ⇠ 0
?0A4=C , ⇠2⌘8;3 , ⇠

0
C08; })

// Branch with 2⌘403 partitioned to child table
⇠ 0
2⌘8;3 = append(⇠2⌘8;3 , 2⌘403 )

S1 = Normalize(D, ⇠?0A4=C , ⇠ 0
2⌘8;3 )

q.push({S1, ⇠?0A4=C , ⇠ 0
2⌘8;3 , ⇠

0
C08; })

// Use pre�x solutions to improve upper bound
upper = min(upper, UpperBound(S0, Π+

⇠0
C08;

D)),

UpperBound(S1, Π+
⇠0
C08;

D))

Function Normalize(D, Cparent, Cchild):
let D?0A4=C = Π+

⇠?0A4=C
(D), D2⌘8;3 = Π⇠2⌘8;3 (D)

if D?0A4=C = D or D2⌘8;3 = D then
return D

else
S?0A4=C = Optimize(D?0A4=C )
S2⌘8;3 = Optimize(D2⌘8;3 )
return LinkWithFK(S?0A4=C , S2⌘8;3 )

Optimizing our objective requires a combinatorial search over a
super-exponentially large search space. To make this tractable, �rst,
we propose a global learning algorithm, SSL����, that structures
the search as a hierarchical partitioning of the columns which
allows us to combine dynamic programming and branch-and-bound

methods to perform an e�cient search that usually does not need
to enumerate all possible schemas. Second, we extend SSL���� to
an anytime algorithm that can return good, if not optimal, solutions
at any point in time.

6.1 SSL����
The SSL���� algorithm enumerates the space of snow�ake schemas
over an input table D by recursively proposing binary partitions of
the table’s columns (see Figure 4). Each partition creates a new child
table in the proposed snow�ake. The child table is deduplicated
while the parent table is not, so a many-to-one join between the two
tables losslessly recovers the input table. Recursive partitioning
of both the parent table and child table can generate arbitrary
snow�ake schemas. We can �nd the optimal snow�ake by �nding
the optimal column partitioning at each step. Formally:

T������ 3. Let � (S|D) be an objective function in the form in
Equation 6 with a prior of the form in Equation 7. Partition ⇠>;B(D)
into two disjoint sets, C?0A4=C and C2⌘8;3 , and denote the duplicate-
preserving projection—D?0A4=C = Π+

C?0A4=CD, and the deduplicating
projection—D2⌘8;3 = ΠC2⌘8;3D. Then,

min
S

� (S|D) = min
C?0A4=C ,C2⌘8;3

⇣
F (D?0A4=C ,D2⌘8;3 ) (9)

+ min
S?0A4=C

�
�
S?0A4=C | D?0A4=C

�
+ min

S2⌘8;3

� (S2⌘8;3 | D2⌘8;3 )
⌘

whereF is a function that does not depend on S.

An implementation of this minimization is sketched in Algo-
rithm 1. Optimize uses a branch-and-bound search to �nd an opti-
mal partitioning of⇠>;B(D) into C?0A4=C and C2⌘8;3 (the outer min-
imization of Equation 3). Given a partitioning, Normalize splits D
into the two subtables,D?0A4=C andD2⌘8;3 . If the partitioning is de-
generate, recursion terminates and it returns the single table schema
consisting of just D. Otherwise, it recursively calls Optimize on
each subtable to �nd the respective optimal snow�akes (the inner
minimizations in Equation 3) and then creates a foreign key to link
them, returning a snow�ake decomposition of D.

The large number of possible column partitions that must be
explored in each call to Optimize makes a brute force enumera-
tion intractable. Instead, we use branch-and-bound to constrain
the search space. Our branch-and-bound search works by �nding
optimal solutions for increasingly large pre�xes of ⇠>;B(D). These
pre�x solutions are used to �nd upper and lower bounds for the
optimal complete solution, which we use to prune the search space.

In Optimize, the search starts by initializing the two partitions,
⇠?0A4=C and ⇠2⌘8;3 to the empty lists, and initializing ⇠C08; , which
contains the columns not yet explored by the search, to⇠>;B(D). At
each node in the search we take the �rst column, 2⌘403 , from ⇠C08;
and branch, adding it to ⇠?0A4=C or ⇠2⌘8;3 in two new nodes added
to the search priority queue. When⇠C08; is empty, all columns have
been partitioned, and the resulting partition gives the optimal so-
lution. (Since the priority queue is ordered by our objective, any
further solutions must be non-optimal.) At each node we also �nd
the optimal solution for the pre�x Π+

⇠?0A4=C[⇠2⌘8;3
D. This is com-

bined with loose bounds on the unexplored columns, Π+
⇠C08;

D, to
produce upper and lower bounds on the complete solution:



D D?0A4=C D2⌘8;3
c1 c2 c3 c4 c5 c6

!

c1 c2 c4 c6
c3 c5

(a) Partition the columns of D into two
subtables—D?0A4=C and D2⌘8;3 . Deduplicate
the latter.

S⇤
?0A4=C S⇤

2⌘8;3
c1 c6 ��

Z
c2 c4

c3 ��
Z

c5

(b) Recursively �nd the optimal snow�ake
schema, S⇤, for each subtable (introducing
foreign keys as needed).

S⇤
?0A4=C Z S⇤

2⌘8;3
c1 c6 �� ��

Z
c2 c4 Z

c3 ��
Z

c5

(c) Create a new FK (blue) linking the root ta-
ble of S⇤

?0A4=C to the root of S⇤
2⌘8;3 , creating a

snow�ake for D.

Figure 4: SSL���� builds snow�ake schemas through recursive binary partitioning of the input table. The recursive process
terminates when no partitioning improves the objective, � . At each level in the recursion, branch-and-bound is used to �nd the partition
which minimizes � , producing the optimal snow�ake for D.

Lower bound: Any optimal pre�x solution provides a trivial
lower bound on � for the complete solution. We can tighten this
somewhat using the following theorem:

T������ 4. Suppose the objective � is of the form in Equation 6
with a canonical prior c described in Section 5.4. Let S⇤,S⇤

C be the
minimizers for the objectives � (·|D), � (·|DC ), respectively. Then, for
any C ⇢ ⇠>;B(D):

� (S⇤ |D) � � (S⇤
C |DC ) + (1 � gC>C )

X
22C⇠

|Ω2 |log2 |Ω2 |. (10)

Upper bound: Any schema including all columns provides a
trivial upper bound on the optimal solution. We can extend any
pre�x solution to include all columns by adding the unexplored
columns to the root table, obtaining the following upper bound.
Let S⇤,S⇤

C be the minimizers for the objectives � (·|D), � (·|DC ),
respectively. Then, for any C ⇢ ⇠>;B(D):

� (S⇤ |D)  � (S⇤
C |DC ) +

X
22C⇠

= · � (2) (11)

where � (2) is the entropy of column 2 is the input data D, and = is
the number of rows in the root table. These bounds are inexpen-
sive to evaluate since the column domains and entropies can be
computed once and stored.

As Optimize proceeds—�nding optimal solutions for increas-
ingly long pre�xes—these upper and lower bounds become tighter.
Finding tight bounds early in the search can substantially improve
the running time of the algorithm. To do this, we sort the columns
from high to low entropy. By putting high entropy columns, which
typically contain structurally important columns, early, and putting
low entropy columns, which contribute little to the optimization
objective, later, the search uncovers the structure of the optimal
schema more quickly and tightens the upper and lower bounds.

Note that the same subproblems can occur many times in our
recursive optimization. By Theorem 3, the solutions to these sub-
problems can be combined to produce the global solution, thus, we
apply top-down dynamic programming, memoizing the results of
Optimize. This greatly improves the e�ciency of the algorithm.

Finally, our approach uses repeated binary partitioning of the
same table to produce general n-ary trees. This introduces some
redundancy since multiple partitioning sequences can produce the
same �nal multi-way partition. Since this ordering does not a�ect
the objective, we impose a canonical ordering using the minimum
column index assigned to each partition.

6.2 Extension to an Anytime Algorithm
Despite the relative e�ciency of the branch-and-bound plus dy-
namic programming algorithm described in the previous section,
run time still grows exponentially as the number of columns grows,
as shown in Figure 10. To address this, we show how to extend it
to return a good approximate solution at any point in time. This
has a second bene�t of tightening the upper bound, which allows
the search to prune more. Recall that previous two-part approaches
must �rst �nd functional dependencies (themostly costly part of the
algorithm) before normalization, so can not provide early solutions.

The upper bound in Equation 11 corresponds to an approximate
solution whose objective is inexpensive to compute but is likely a
poor solution since all columns in⇠C08; are simply added to the root
table. To �nd a better approximate solution, we occasionally run a
more costly greedy allocation procedure that sequentially assigns
the columns in ⇠C08; to the table in the current schema which
minimizes the objective � . The objective value of the resulting
schema can be used as an improved upper bound.

Since this greedy allocation procedure is more expensive to run,
it is triggered only when there is a possible change in the structure
of the schema. We keep track of the partial schema associated with
the upper bound from Equation 11 and run greedy allocation only
when this upper bound changes in the root call to Optimize. If the
algorithm reaches the time limit for the search before completion, it
returns the best solution found so far which consists of the optimal
solution for a pre�x of the columns, plus greedy placement of the
remaining columns.

Note that this greedy approach allocates the remaining columns
to existing tables in the partial optimal schema; it does not create
new tables or alter relationships in the schema. Thus, the exhaustive
search component is necessary to �nd a globally optimal schema.

7 EXPERIMENTS
To evaluate the e�ectiveness of our proposed statistical schema
learning (SSL����) approach, we implemented a single-threaded
version of our algorithm in Rust. We compare our results to the
existing state-of-the-art by Papenbrock and Naumann (P&N) [30]
which is parallelized and implemented in Java [28].

7.1 Experimental setup
All of our experiments for SSL���� were run on a dual CPU Intel
Xeon E5-2630 v3 @ 2.40GHz machine with 16 physical cores and



192 GB of memory running CentOS Linux 7. For P&N, we ran some
of the long running experiments on a faster dual CPU Intel Xeon
Silver 4114 CPU @ 2.20GHz with 20 physical cores and 192 GB of
memory. Since SSL���� is an anytime algorithm, we report the
time to �nd the optimal solution (early termination at this point
would get the optimal solution) and the total time to both �nd the
solution and validate that it is optimal. P&N only returns a schema
after completion, so we only report its total time.

As described in Section 5.4, our algorithm can leverage addi-
tional information, such as query histories, via informative priors.
For a fair comparison with P&N, we do not take advantage of this;
in the following experiments both algorithms use the same input
data set. We do include a prior that prefers normalized tables with
simple candidate keys; P&N’s heuristic-based approach makes a
similar assumption that e�ectively generates a heuristically con-
structed "golden set" of FDs. Concretely, we use the MDL objective
(Equation 1), setting V = 1, and add a prior for tables with simple
candidate keys. Following Example 3 in Section 5.4, we add a both
a discouragement prior with W = 10 to penalize tables without a
simple candidate key and encouragement prior with g = 1/2 that
encourages splitting out tables with a simple key. These choices
have natural interpretation. The choice of W penalizes a table with-
out a simple candidate key by making it more expensive to store
the foreign key. Each entry requires 10 more bits. The choice of
g halves the cost of storing the primary key when it is a simple
key. We found that modifying the weight V on the MDL penalty
had little e�ect on the learned schema as the evidence from the
data, which grows linearly with the data size, dominated the prior,
which does not. We found that, qualitatively, using both non-zero W
and g had a signi�cant impact on the quality of the learned schema.
However, limited experiments when varying the parameter from
W = 10 to W = 15 did not yield qualitatively di�erent results. We did
not explore varying g .

Finally, to avoid the overhead of our greedy solution (Section 6.2)
in simple cases where it doesn’t provide much bene�t, we only
perform greedy allocation after the optimal schema on the �rst 15
columns has been computed.

7.2 Data
We evaluate our method on TPC-H, and a number of real-world
data sets, including Musicbrainz [13] and 5 data sets from the CTU
relational learning repository [25]. These data sets are already nor-
malized which serves as the ground truth for good schema.

From each normalized data set, we construct denormalized tables
involving some or all of the tables in the data set. In Table 1, we
summarize these denormalized tables, indicating the source data set
for each, the number of tables included, the total number of columns,
and the shape of the join graph used for denormalizing the original
schema: Star and Snow�ake-shaped join graphs only include many-
to-one relationships with a single root; Acyclic graphs include
many-to-many joins, and Cyclic graphs include loops in the join
graph. The Musicbrainz denormalized table is the same as that used
in the prior state-of-the-art [30]; for this data set we know the
source tables, but not the ground truth join graph.

Later, we also report our results on the North Carolina voter reg-
istration dataset [27] which is distributed as a single table, with no
ground truth schema. This dataset has 8.2M rows and 71 columns.

7.3 Quality of Learned Schemas
To evaluate the quality of the learned schemas, we compare them

to the ground truth normalized schemas. Since we are not aware of
an existing schema similarity metric appropriate for this task, we
use an edit distance which measures the number of editing opera-
tions a person might perform to make the learned schema match
the tables in the ground truth schema. To de�ne the edit distance,
we consider three editing operations on schemas: (1) merging two
tables, (2) splitting a table into two, and (3) moving one column
between two tables. The edit distance is the minimum number of
such edit operations on a learned schema to match the original
schema. We say a learned schema matches an original schema if
the entities in the original schema have the same data columns (as
opposed to FK columns) as entities in the learned schema. More
precisely, the schemas match if there is an injective mapping from
the tables in the learned schema to the original schema and for
every learned table C with corresponding table C0 in the original
schema, C columns are a subset of C0’s. While there are lines of work
on automatically computing various tree edit distances [8, 32], we
could not �nd existing algorithms that compute the edit distance
we de�ned or one with similar semantics. Instead, we computed
the edit distance by hand. This was possible in our experiments
since the distances were small and mostly involved easy to resolve
merge operations. Learned schemas and code are available at [3].

Since our main task is to identify meaningful entities in the data
but a number of our datasets are generated from non-snow�ake
schemas, we do not compare the graphical structure of the learned
and the original schema; we only compare the entities themselves.

Since P&N generates logical schemas with primary keys, we
convert P&N schemas to conceptual schemas by erasing the FK
information as shown in Figure 2. In some cases, P&Nmay duplicate
a column to form primary keys in multiple tables; for example, in
Figure 6, c_id appears in multiple tables corresponding to the true
Track and Recording tables. In these cases, we assign the column
to the table that casts P&N in the best light, namely the table that
minimizes the edit distance to the underlying schema.

We also break down the edit distance by number of edit opera-
tions of each type. Since there are multiple edit sequences that can
convert from one schema to another, we use edit sequences that
prefer merges to column moves and column moves moves to splits.
This preference favors operations that require fewer choices. Choos-
ing two tables to merge is considered easier than choosing what
subset of columns to split out. The former has at most quadratically
many choices while the latter has exponentially many.

Assignment errors are ignored for duplicate columns in the de-
normalized table when they belong to di�erent tables in the original
schema (such as FK-PK pairs); no solely data-driven algorithm can
distinguish these columns. Tables in the original schema joined by
one-to-one relationships are also considered a single table as they
cannot be distinguished using only their distribution of values.

7.4 Results on Quality
Figure 5 shows the number of edits of each type and the overall
edit distance across all data sets for SSL���� (blue) and P&N (red).
SSL���� learns schemas that are much closer to the originals, with
a total edit distance that is 1/5C⌘ of P&N’s. P&N is highly susceptible



Number of tables in learned schema and edit distance to original schema
Input SSL���� P&N

Dataset Tbls Cols Schema Tbls Merge Split Move Distance Tbls Merge Split Move Distance
TPC-H 8 52 Snow�ake 10 2 0 0 2 15 7 0 1 8
Musicbrainz 11 113 Unknown 11 0 0 2 2 20 10 1 8 19
PKDD Financial 6 45 Acyclic 5 0 1 0 1 9 4 2 0 6
MovieLens (actors) 5 13 Acyclic 3 0 0 2 2 5 0 0 1 1
MovieLens (users) 5 14 Acyclic 4 0 0 1 1 5 0 0 1 1
FNHK 3 22 Cyclic 5 1 0 0 1 10 5 0 0 5
StackOver�ow (posts) 4 44 Snow�ake 4 0 0 0 0 25 18 0 0 18
StackOver�ow (votes) 5 48 Acyclic 8 1 0 0 1 10 5 0 0 5
CCS Transactions 4 18 Star 5 1 0 1 2 8 4 0 0 4

Table 1: Quality of learned schemas. SSL���� generates schemas much closer to the ground truth as measured by the edit distance.
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Figure 5: Number of individual edits and total edit distance
from original normalized schema for the data sets in Table
1 (lower is better).

to over-splitting, producing many more tables than in the original
schemas. For example, the original schema for TPC-H has 8 tables.
SSL���� learns a schema with 10 tables; merging 2 pairs of these
tables reconstructs the original schema. In contrast, P&N learns
a schema with 15 tables; merging 7 pairs of tables and moving
one column between tables is required to reconstruct the original
schema. This is broken down in Table 1, showing that SSL����’s
advantage holds even if the underlying schema does not satisfy
the model assumption of a hierarchical snow�ake. P&N returns a
marginally higher quality result in only 1 out of 9 cases.

Furthermore, we note that in a number of cases labeled as an
error, SSL���� uncovers a meaningful real world entity. For exam-
ple, the CCS dataset consists of gas station transactions. SSL����
generates a semantically reasonable table identifying the gas station
chain. However, this is not modeled in the original gasstations
schema, so we classify this as an error. Similarly, in TPC-H, SSL����
splits out the Part Manufacturer from the Parts table—a semanti-
cally reasonable normalization that does not exist in the original
schema—and it uses an additional table to model a cross-column
dependency in the de�nition of TPC-H where all line items with
linestatus=’O’ have a ship date before 1995-06-18 and all with
linestatus=’F’ have ship date on or after 1995-06-18. In con-
trast, Figures 6 and 8 illustrate that the over-splitting behavior of
P&N often does not produce semantically meaningful entities.

We note that for non-snow�ake schemas, such as in the Stack-
Over�ow (votes) dataset, both SSL���� and P&N learn junction
tables that do not exist in the original schema due to the snow�ake

schema constraint of both algorithms. Even in these cases, however,
SSL���� learns the entities in the source schema.

To qualitatively demonstrate the di�erence in learned schema
quality, the left side of Figure 6 shows the results for the Mu-
sicBrainz data set from Papenbrock and Naumann [30] compared
to the results of SSL���� on the right. Each node in the tree repre-
sents a table in the learned schema. To simplify the display, we use
l_* to denote a set of column names with pre�x �l_�.

In both cases, the methods learn a snow�ake schema with a root
junction table to capture the many-to-many relationships among
Artist, Place, Release label, and Track that exist in the original
schema. However, in this case, P&N greatly over partitions the
schema, producing 20 tables, compared to the 11 tables in the orig-
inal schema (extra tables are marked with a red triangle; these
need to be merged into a parent table to reconstruct the original
schema). It also fails to correctly place a large number of low cardi-
nality columns (highlighted in yellow; these need to be moved to
their correct location to reconstruct the original schema). In con-
trast, SSL���� yields a near perfect snow�ake; only two very low
cardinality columns are misplaced. Furthermore, although these
columns, a_type and a_edits_pending, belong to the artist ta-
ble, they are functionally dependent on the primary key ac_id

of the smaller artist_credit table. We also note that the two
methods place artist_credit under two di�erent tables. In this
case, both placements can be considered correct since there is a
FK-PK relationship between both artist and artist_credit as
well as release_group and artist_credit, however, SSL���� as-
sociates it with the smaller artist table which is arguably a more
semantically meaningful relationship.

7.5 Impact of noise
To test the robustness of the algorithms to noise in the dataset,
we took the TPC-H data set and randomly replaced 0.02% of the
entries with a randomly chosen value from the same column. This
corresponds to corrupting 1% of rows. This more challenging case
required signi�cantly more time so we used only 20% of orders
from the denormalized TPC-H dataset.

The resulting schemas learned for this noisy version of TPC-H
are shown in Figure 7. Despite the noise, SSL���� is still able to



P&N
a_id,p_id, rl_id t_id (junction table)

t_* Track

N t_ac, t_lupdated

N t_position, t_number

c_id, c_gid, c_length, c_comment, c_updated Recording

N c_name, c_edits_pending

p_* Place

N p_name, p_type, p_edits_pending

a_*, acn_name Artist (Credit Name)

N a_lupdated, a_*, acn_position, acn_joinp

e_id, e_gid, e_name, e_type, e_lupdated Area

rl_* Release label

l_* Label

N l_bday, l_emonth, l_eday, l_type

N l_eyear, l_ended

r_* Release

rg_* Release Group

N rg_comment, rg_lupdated, rg_editspending, rg_lupdated

ac_id, ac_name, ac_account, ac_*,

N e_byear, e_bmonth, e_bday , a_type Artist Credit

N e_edits_pending, e_eyear, e_*, c_video, t_isdtrack,

(a, t, l)_edits_pending, ac_ref_count, ac_created

SSL����
(1M) a_id,p_id, rl_id t_id (junction table)

(1561) t_* Track

(1255) c_* Recording

(922) p_* Place

(173) a_id, a_*, acn_* Artist (Credit Name)

(157) ac_*, a_type, a_edits_pending Artist Credit

(22) e_* Area

(861) rl_* Release label

(340) l_* Label

(841) r_* Release

(624) rg_* Release Group

Figure 6: Comparison of learned schemas on MusicBrainz. The prefix_* wildcard replaces multiple columns of that form, and
(a,b)_c denotes a_c, b_c. We annotate the edits needed to transform the learned schemas into the ground truth: boxed entities should be
further split, entities with a N should be merged with a parent entity, and highlighted columns should be moved to a di�erent branch in the
schema. P&N heavily over-partitions the schema and misplaces low cardinality columns due to semantically unimportant FDs in the data. In
contrast, SSL���� very accurately learns the original schema, only misplacing two very low cardinality columns.

P&N
l_commitdate, l_receiptdate, l_comment LineItem

s_name, ps_availqty, ps_supplycost, l_linenumber,

l_returnflag, l_* ?

. . . ?

ps_supplycost ?

N l_tax, l_shipinstruct, l_shipmode , s_phone,

s_acctbal, ps_availqty, ?

n_* Nation?

c_custkey, r_regionkey, r_name, r_comment,

ps_availqty ?

. . . ?

SSL����
l_comment, l_*, o_shippriority LineItem

ps_* PartSupp

p_* Part

s_*, n_* , r_* Supplier/Nation/Region

o_orderkey, o_*, l_linestatus Order

c_* Customer

Figure 7: Schemas learned from TPC-H with noise. Top: 7 of
the 23 tables generated by P&N are shown. Fewmap to semantically
meaningful entities. Bottom: SSL���� recovers the ground truth
TPC-H schema almost exactly; two columns are misplaced and
Suppliers, Nations, and Regions are placed in a single table.

recover most of the structure in TPC-H. It collapses the Supplier, Na-
tion, and Region tables into one table, and it assigns o_shippriority

to the LineItems table and l_linestatus to Orders. However, the
core structure is successfully identi�ed.

In contrast, we could identify little meaningful structure in the
schema learned by P&N, In this case, P&N generates 23 tables.
However, unlike the noise-free case where the additional tables can
simply be merged together to reconstruct the original schema, in
this noisy scenario, many tables are composed of attributes drawn
from multiple tables across the original schema. Figure 7 shows
portions of the schema learned by P&N; no straightforward trans-
formation of this schema will recover the ground truth. Thus, P&N
was unable to uncover semantically meaningful structure in the
presence of a small amount of noise.

7.6 Real world denormalized dataset
We also demonstrate SSL���� on the North Carolina voter reg-
istration dataset which is distributed as a single table and does
not have a ground truth schema. Figure 8 shows the �rst few lev-
els of the schemas for P&N and SSL����. P&N learns many very
high cardinality tables and scatters voter demographic columns
across the schema due to incidental functional dependencies. In con-
strast, SSL���� arranges the columns into a concise, semantically
interpretable schema with a root table containing voter speci�c
attributes, a hierarchy of increasingly speci�c geographic regions,
and set of low cardinality dictionary tables.

7.7 Performance
In addition to �nding higher quality schemas, Figure 9 shows that
SSL���� is signi�cantly faster than P&N, by up to two orders of



P&N
(1M) ncid, last_name, first_name, middle_name

(999,999) mail_addr(1-2), mail_(city, zipcode),

full_phone_number, name_suffix_lbl, birth_state, registr_date

(974,392) res_street_addr, race_code, birth_age,

reason_cd, precinct_(abbrv, desc), vtd_(abbrv, desc)

(975,307) res_street_addr, mail_addr(3-4), gender_code

. . .

(916,478) res_street_addr, drivers_lic, municipality_*

(906,019) ethnic_code, party_cd, cong_dist, super_court,

judic_dist, nc_senate, nc_house, . . .

(855,117) res_street_addr, ward_*,

(sewer, sanit, rescue)_dist_*

. . .

(994,150) voter_reg_num, birth_year

. . .

(16) county_(id, desc)

SSL����
(1M) ncid, voter_reg_num, phone_num,

res_street_address, mail_addr1,

(first,middle,last)_name,

birth_(age,year,state),

(party, gender, race, ethnic)_code, drivers_lic

(50082) mail_addr(2-4), mail_(zipcode, city, state),

name_suffix_lbl, fire_district

(1628) zip_code, res_city_desc, state_cd,

(water,sewer)_dist

(township, ward)_(abbrv,desc), confidential_ind

(542) (vtd, precinct, sanit_dist)_(abbr, desc)

. . .

(5) status_cd, voter_status_desc

(27) reason_cd, voter_status_reason_desc

Figure 8: Learned schemas on the NC voter registration dataset. (a,b)_(c,d) denotes the 4 attributes: a_c, b_c, a_d, b_d. P&N
over-partitions tables and scatters demographic information throughout the schema. SSL���� produces a concise, semantically meaningful
schema with voter demographic information in the root table and a geographic hierarchy.

Input SSL���� P&N Speedup
Dataset Rows Cols Schema Solution time (min) Total time Total time Solution Total

CCS Transactions 1 K 18 Star 0.00 0.00 0.01 30.00 30.00
MovieLens (actors) 148 K 13 Acyclic 0.01 0.01 0.03 6.57 6.57
MovieLens (users) 1.1 M 14 Acyclic 0.03 0.03 0.18 6.89 6.89

FNHK 2.3 M 22 Cyclic 0.80 0.90 1.88 2.35 2.09
StackOver�ow (posts) 213 K 44 Snow�ake 3.80 4.00 12.37 3.25 3.09

PKDD Financial 1.3M 45 Acyclic 1.20 1.70 12.32 10.26 7.25
StackOver�ow (votes) 3.1 M 48 Acyclic 1.00 1.70 226.35 226.35 133.15

TPC-H (sampled + noisy) 1.1 M 52 Snow�ake 2.40 132.90 364.78 151.99 2.74
NC Voter 1 M 71 Unknown 33.18 33.54 547.80 16.51 16.33

Musicbrainz 1 M 113 Unknown 2.50 1125.88 1775.73 710.29 1.58
TPC-H 6 M 52 Snow�ake 20.00 24.00 1973.77 98.69 82.24

Table 2: s. SSL���� is faster for all cases we tried, by up to two orders of magnitude (Total Speedup column).

1 4 16 64 256 1024

CCS Transactions

MovieLens (actors)

MovieLens (users)

FNHK

StackOverflow (posts)

PKDD Financial

StackOverflow (votes)

TPC-H (noisy)

NC Voter

Musicbrainz

TPC-H

Speedup

Total time Solution time

Figure 9: Speedup
⇣

P&N runtime
SSLearn runtime

⌘
by dataset. Blue bars

use the total time spent by SSL���� while orange bars use the time
at which SSL���� found its solution.

magnitude on large datasets. Our single-threaded algorithm ex-
haustively searches through all 52 columns of TPC-H in 25minutes
while P&N requires over 1.5 days despite running on 20 physi-
cal cores. SSL���� was faster on all data sets we tested. Detailed
performance results are shown in Table 2.

Furthermore, although the search may take a long time, the
optimal solution may be found much more quickly. In some cases,
much of the time is spent validating that an early candidate solution
is actually the optimal solution. For the MusicBrainz dataset, the
�nal solution is found at 2.5minutes and 19 hours is spent verifying
that the solution is optimal. This property also allows us to build
methods that execute in bounded time. Since SSL���� found the
solution within 35 minutes for all our datasets, capping the runtime
at 1 hour would yield a procedure that executes in bounded time
and returns the optimal result. However, the long stretches of time
where the solver is verifying if the current solution is optimal make
it di�cult to predict what is an appropriate cuto� time to �nd a
good schema. We found that the time to �nd the optimal solution
depended heavily on the order in which columns are searched. If,
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Figure 10: Time to learn best schema on �rst G columns.

for every table, some candidate key appeared early in the search,
then the solution was found very quickly.

Even though SSL���� is much faster than P&N, Figure 10 demon-
strates on the MusicBrainz data set that our algorithm’s run time is
still exponential in the number of columns processed in the exhaus-
tive search. Thus, the ability to maintain good candidate solutions
at all times is a useful property of the algorithm.

8 ANALYSIS
The statistical framework developed in Section 5 allows us to ana-
lyze how our method works. In particular, it allows us to examine
when our method chooses to split a table, and the role of the column
independence assumption in our generative model. This helps us
understand the unique properties and advantages of our method
versus related information theoretic work.

Consider a schema S with table C . For a set of columns C ⇢
⇠>;B(C ), let S0 be the schema obtained by splitting out the columns
C from C to form a deduplicated table C 0.

T������ 5. Consider schemas S,S0 where the only di�erence is
that for some table C 2 )1;B(S) and columns C ⇢ ⇠>;B(C ), S0 splits C
and puts columns C into a new table C 0. Consider tuples from columns
C in C , and denote the empirical joint distribution of tuples by ?̂C 0 .
Schema learning prefers the split schema S0 if and only if

=C  !

 
?̂C 0

��� Y
22C

?̂2

!
> =C 0

X
22⇠>;B(C 0)

� (2) = (8I4(C 0) (12)

where ?̂C 0, ?̂2 are the respective empirical distributions for rows in C 0

or column 2 .  ! is the Kullbeck-Leibler divergence measuring the
di�erence in distributions.

The l.h.s. represents the space savings from replacing redundant
information in multiple columns in the original table with a foreign
key. The r.h.s. represents the cost of creating a new child table.

8.1 Comparison to Approximate FD measure
We can compare this to an information theoretic measure for de-
tecting approximate FDs. The fraction of information measure [23]
is used to test if the FD - ! . exists, and it is de�ned to be

� (- ;. ) :=
� (. ) � � (. |- )

� (. )
=
 !(?̂-. | |?̂- ?̂. )

� (. )
(13)

where ?̂. , ?̂-. respectively denote the empirical distribution of
all columns in . and all columns in - and . . It rejects the null
hypothesis that - ! . is an FD if � (- ;. ) > 2 for some constant
2 or equivalently if  !(?̂-. | |?̂- ?̂. ) > 2� (. ). If the FD is detected,
then an FD driven schema normalization method may split the
columns in - ,. into another table C 0.

Comparing equations 12 and 13, the main similarity is the use
of the KL-divergence to measure dependence. It compares a model
where the joint distribution (?̂C 0 or ?̂-. ) of columns in C 0 is fully
dependent with one which treats columns or groups of columns as
independent. This also justi�es the column independence assump-
tions in our model. Like with approximate FD measures, indepen-
dence assumptions provide a useful measure of dependence even if
the columns are not truly independent.

Our measure has a few key di�erences and advantages as well.
First, Equation 12 incorporates the size of the tables =C ,=0C . This
key di�erence makes our method sensitive to the duplication that
naturally occurs in many-to-one joins. In comparison, entropic
measures that rely only on the distribution of values can only indi-
rectly measure the amount of duplication. Thus, rather than using a
generic measure of dependence, our objective is speci�cally suited
for detecting joins. Secondly, our method is easier to apply. It does
not require choosing thresholds or how much dependence is ap-
propriate. Thirdly, our method does not require additional bias
correction to avoid excessive false positives, unlike the approxi-
mate FD measure [23].

9 DISCUSSION AND FUTUREWORK
Our schema learning method has obvious application in multiple
applications, including in data analysis and exploration. By �nding
meaningful clusters and hierarchies of discrete valued columns,
it can help data analysts to better understand the relationships
between columns during data exploration. Extending our model to
handle continuous valued columns is a potential area of future work.
A second possible direction for future work is extend our method
to learn acyclic schemas. Our experiments in section 7.4 identify
several cases where ourmethod learns themeaningful entities in the
schema but create junction tables where there are many-to-many
relationships. Removing these junction tables as a post-processing
step could recover the original acyclic schema. Another future
direction is to extend our approach to explicitly model noise in the
data, for example by using a noise model to cluster similar rows.
This would increase the robustness of Statistical Schema Learning.

A direction for future algorithmic work is to use Markov Chain
Monte Carlo (MCMC) methods. This would allow for even more
�exible priors that do not need to have a recursive decomposition
as well as allow it to better explore allocations of columns that are
searched near the end of an exhaustive search. However, it would
lose e�ciencies obtained by dynamic programming.

Statistical Schema Learning does not explicitly force the learned
schema to follow a canonical normal form. However, existing meth-
ods that guarantee normalization into a canonical normal form
can be run as a post-processing step. Our approach can accelerate
those methods as the normalization can be performed on smaller
subtables with fewer columns than the original table.



10 CONCLUSION
We propose a new paradigm for schema learning, driven by directly
optimizing for good properties, rather than assuming that conform-
ing to a canonical normal form will naturally yield a good schema.
Chief among these is the property of minimum description length
which quanti�es Occam’s razor. Thus, even as an unsupervised
learning method without a ground truth to compare to, our model
has a principled method for picking out meaningful real world
entities from denormalized data sets. By developing a Bayesian sta-
tistical framework, the method is made extensible, allowing other
desirable properties to be incorporated into the optimization cri-
terion. Importantly, we make computation under this paradigm
tractable, by developing an e�cient branch-and-bound algorithm
with dynamic programming. Our experiments show that this com-
bination of statistical modeling plus an e�cient optimization algo-
rithm produces results that are of signi�cantly higher quality and
more robust to noise in much less time than existing methods.

A PROOFS
T������ 1 �����. We show that even the simpler class of star

schemas is already superexponential. Consider the number of ways
to partition< columns. This is the Bell number ⌫< which asymp-
totically satis�es log⌫< = = log= +$(= log log=). ⇤

T������ 2 �����. We start by showing the empirical entropy is
the negativemaximum log-likelihood of a"D;C8=><80; (=, ?1, . . . ?: ).
Let- be a draw from this distribution. TheMLE of the class probabil-
ities is trivially the empirical probabilities ?̂: = -:/=. Themaximum
log-likelihood in base 2 is ✓(?̂ |D) = �P

: =
G:
= log2 ?̂ = �=� (- ).

Each column is independent and distributed as a multinomial
distribution. Since columns are generated independently, the maxi-
mum log-likelihood is

sup
d
✓(S, d |D) =

X
C 2)1;B(S)

X
22⇠>;B(C )

�=C� (2) = �
X

C 2)1;B(S)
!4=6C⌘(C )

⇤

T������ 3 �����. Let C be the columns assigned to some child
C and its descendents of the root in S. Let SC denote the subtree
rooted at C and let S0 be S with SC erased. Simple algebra yields

� (S|D) = F (DC⇠ ,D*
C ) + =� (2 5 : ) + 6(D, D̃C )

+ �
�
S0 | DC⇠

�
+ �

⇣
SC | D*

C
⌘

where 2 5 : is the column that acts as a FK to C .We can takeF (DC⇠ ,D*
C ) =

=� (2 5 : ) + 6(D, D̃C ) where 2 5 : is the foreign key column joining
the root to table C . Minimizing this objective gives

min
S

� (S|D) = min
C⇢⇠>;B(D)

min
(0,(1

⇣
F (DC⇠ ,D*

C )

+ �
�
(0 | DC⇠

�
+ �

⇣
(1 | D*

C
⌘ ⌘

= min
C⇢⇠>;B(D)

⇣
F (DC⇠ ,D*

C )

+ min
(0

�
�
(0 | DC⇠

�
+ min

(1
�
⇣
(1 | D*

C
⌘ ⌘

⇤

The last equality follows sinceF is constant given C. Changes to
S0 do not a�ect S1 and vice versa since their columns are disjoint.

T������ 4 �����. Consider the minimizer S⇤. Let T1 denote
the set of tables that only contain columns from C⇠ and T1 denote
the remaining tables that contain some column of C⇠ . The objective
can be written as the sum of table costs. We �rst examine the cost
of tables in T1. For C 2 T1,
=C

X
22)1;B(C )

� (2) � gC>C=C log2 =C � (1 � gC>C )=C
X

22)1;B(C )
� (2)

� (1 � gC>C )=C
X

22)1;B(C )
|Ω8 |log2 |Ω8 |.

The �rst inequality follows from the fact that the entropy of a joint
distribution is at most the sum of marginal entropies.

For a table C in T0, denote by C0 the table before any columns in
C⇠ were added and =0 the number of rows in C0. We examine the
case where there is only one added column 2 from C⇠ . Including
an additional column can only add additional rows, so we split the
table into 3 parts: (1) a subtable of C that is equal to C0, consisting of a
subset of rows and all columns except 2 , (2) the remaining rows and
all columns except 2 , (3) the values in column 2 . The cost of coding
C with one code is lower bounded by the cost of coding all 3 parts
separately with an optimal code for each of the three parts. The
cost of coding part (1) using an optimal columnwise coding is just
the original cost of coding C0. The change in the prior after adding
2 is ∆c = gC>C (=0 log2 =0 � =C log2 =C ). Since the function G log2 G
is convex, Jensen’s inequality gives that E/ log2 / > (E/ ) log2 E/ .
Taking / to be =0 or =C � =0 with equal probability, one �nds that
=C
2 log2

=C
2 < =C�=0

2 log2(=C � =0) +
=0
2 log2(=0) and equivalently,

=0 log2 =0 � =C log2 =C > �(=C � =0) log2(=C � =0) � =C . Thus ∆c >
�gC>C (=C �=0) log2(=C �=0). The cost of coding (2) and (3) separately
is greater than or equal to the cost of coding them using their joint
distribution, and there are at least E = max{=C � =0, |Ω2 |} distinct
values, their combined cost must be at least E log2 E . Thus, the
change in the objective must be at least E log2 E + ∆c > E log2 E �
gC>CE log2 E > (1 � gC>C )|Ω2 |log2 |Ω2 |.

⇤

T������ 5. A split is prefered if �"!⇢ (S0 |D) � �"!⇢ (S|D).
Columns in C⇠ contribute the same amount to the log-likelihood
in S and S0, so they can be ignored. The table C 0 that is split out
only contributes to the objective of S0 and is !4=6C⌘(C 0). This only
leaves a comparison between the added foreign key in S0 and the
contribution of columns C inS. InS0 the distribution of the foreign
key is the empirical joint distribution for columns C. Expanding
the di�erence in log-likelihoods gives

�"!⇢ (S0 |D) � �"!⇢ (S|D)

= =C
X
G
?̂C (G )

 
log ?̂C (G ) �

X
22C

log ?̂2 (G )

!
� !4=6C⌘(C 0)

= =C
X
G

log ?̂C (G )

 
?̂C (G ) � log

Y
22C

?̂2 (G )

!
� !4=6C⌘(C 0)

=  !

 
?̂C

��� Y
22C

?̂2

!
� !4=6C⌘(C 0).

⇤
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