
An Analytic Data Engine for Visualization in Tableau

Richard Wesley

Matthew Eldridge

Pawel Terlecki

Tableau Software
{hawkfish, eldridge, pterlecki}@tableausoftware.com

ABSTRACT
Efficient data processing is critical for interactive visualization of
analytic data sets. Inspired by the large amount of recent research
on column-oriented stores, we have developed a new specialized
analytic data engine tightly-coupled with the Tableau data
visualization system.

The Tableau Data Engine ships as an integral part of Tableau 6.0
and is intended for the desktop and server environments. This
paper covers the main requirements of our project, system
architecture and query-processing pipeline. We use real-life
visualization scenarios to illustrate basic concepts and provide
experimental evaluation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing,
Relational databases.

General Terms
Algorithms, Performance, Design

Keywords
Column store, Query optimization, Data visualization, Tableau
Data Engine, TDE

1. INTRODUCTION
Tableau is a graphical system for performing ad-hoc exploration
and analysis of customer data sets. It is a commercial continuation
of the Polaris research project [1] and over the past several years
has become a powerful component of the BI stack in many
organizations.

Using Tableau, information workers can prepare interactive
visualizations through a desktop application, which can either
connect to an online data source or work offline on its own copy
of the data, and is able to switch seamlessly between the two
versions. The first option ensures consistency across all connected
users but it requires a single database server to handle a
substantial analytic workload. In many organizations the server

machine of choice has other interfering responsibilities, often
operational, or is not suitable for such workloads.

The offline case is not less important. Users often wish to perform
analyses on copies of their data when:

• The original data is unavailable (e.g. offline operation
while travelling);

• The data may be stored in a high-latency database that is
not well suited for analytic queries (e.g. text files);

• The analysis is to be presented as a self-contained
report.

These requirements led to the Tableau extract feature, which
allows users to retrieve a portion of the original data and perform
further analysis offline. Consequently, the system needs to be
equipped with an internal data engine. Originally, this feature was
implemented using the Firebird open source relational database.
Firebird has a number of advantages for use in a commercial
desktop application: small footprint, an architecture designed for
embedding, complete SQL-92 semantics and a large set of native
data types. Unfortunately, it also has an old “System-R”-style
architecture and suffers from the analytic performance issues
common to such systems, such as transactional locking, excessive
I/O and row level operations [8]. In the spring of 2009 our team
was formed to find or build a suitable replacement.

Our most important requirement was to efficiently handle the
types of analytic queries produced by Tableau. Since a primary
use case is the unstructured exploration of new data sets, the
desired system needed to avoid unexpected performance cliffs
associated with premature optimization of the data store for a
small set of queries. For the most part, workloads consist of
typical aggregation queries, but Tableau supports complex
multidimensional filtering expressed through explicit predicates or
lookup tables. Inner and left equi joins need to be supported. In
addition, users can define new columns using a typical set of
relational row-level functions. These user-defined columns can
often be inherently slow to evaluate and it may be desirable to
instantiate them for performance. Last but not least, Tableau
makes frequent domain queries in order to drive various pieces of
user interface, e.g. filter controls.

A second source of constraints was the wide variety of data types
present in the myriad database vendors that Tableau connects to.
In addition to several types of numerics and dates, Tableau also
supports per-column comparison semantics. Extracting data from
such systems should not change the semantics of the queries
(including any locale-specific semantics), thus, the new system
needed to have an easily extensible type system, including the
ability to extend the set of collated string types.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 1-58113-000-0/00/0010…$10.00.

Another design constraint came from the target platform for
Tableau Desktop. A significant fraction of the target audience
was presumed to be working on 32-bit Windows™ laptops with
2-4GB of RAM. These same users were also expected to be
working with data sets that might exceed their working memory,
thus, a non-memory-resident system was required that could
perform well on this limited hardware configuration.

Moreover, the desktop application is mostly delivered via
downloads from the Internet, which meant that the new system
needed to have a relatively small execution image (Firebird’s
download footprint was on the order of 1.5MB).

The Tableau system is also provided in a server configuration for
collaborative sharing of visualizations. The server operating
system was intended to be 64-bit Windows™ to support larger
addressable memory. Existing Tableau server deployments
require only a fraction of available storage of a single machine.
Under this simplifying assumption, we expected the database to
scale-up and scale-out.

In addition, there was also a set of “non-requirements”. Most
notably, the system did not need to have any sort of single row
update capability because Tableau does not perform such “write
back” operations. Tableau also presumes that integrity constraints
are to be enforced by the source database itself. Stored procedures
are not used.

After reviewing the available systems (both commercial and open
source) we concluded that there was no existing system that could
meet our needs:

• Complex filters are often best expressed using left joins
to temporary tables and many systems have trouble
executing such joins quickly (or at all in some cases);

• Typical analytic systems (and even some major “mixed
workload” vendors) do not support column-level
collation;

• Most existing systems are designed for server
environments where hardware can be chosen to match
the workload;

• Installation footprints are often quite large and not
typically designed for embedding.

Accordingly, we set out to build our own analytic query engine.

A review of the literature led us to a block-iterated column store
design modeled on the MonetDB/X100 project [2] and subsequent
work. Our new specialized data engine is further referred to as
Tableau Data Engine (TDE). It can be configured to operate in
either a single user desktop application environment or a shared
server environment. The latter uses a shared-nothing architecture
with inter-query parallelism. The focus of this paper is efficient
data processing support for Tableau Desktop.

As mentioned before, our project was strongly influenced by the
extensive research around MonetDB [2][3]. We also included
some concepts on operations on compressed data from C-Store
[4]. In addition, we investigated other commercial column stores.
In particular, InfoBright [11] partitions its data into 64KB
portions, called data packs. Rich statistical information associated
with each pack enables a quick exclusion of data that are
irrelevant for a given query. The Gemini add-on to Microsoft
Excel is an embedded database with a column-oriented storage.

As in our solution, compressed data is kept in a workbook.
However, data processing capabilities in Gemini are currently
limited by the available memory. Slow calculations can be
persisted as columns on-demand, which is similar to extract
optimization in Tableau (see Sect. 5.1).

Section 2 provides a running visualization example. The TDE
architecture is covered in Sect. 3. Data compression and query
optimization are given in Sect. 4 and 5, respectively. Section 6
presents experiments. We describe additional visualization
support, such as query cancellation, in Sect. 7. The paper is
concluded in Sect. 8.

2. Visualization Scenario
Tableau provides a drag and drop interface for interactive data
exploration. It uses the VizQL language [1] to describe an
analytical query and associated graphical layout. Queries are
caused by user interactions and consequently have an ad hoc
nature. The results received from the database are further post-
processed and rendered to obtain a specified visualization.

Figure 1. Visualization of profit and sales correlation over

time for different regions and products.

Let us consider a simple data relation with two measures Sales
and Profit, and four dimensions: Time, State, Product and
Supplier. We want to investigate the correlation of both measures
over time for each Product and State. This can be accomplished
by a tabular view where each column corresponds to a different
Product and each row to a different State. Each cell of the grid
contains the corresponding correlation chart (Fig. 1).

In order to make the visualization less detailed one may want to
roll up on Time and State. Since no explicit hierarchies are
defined on those dimensions, we define new higher dimension
levels using auxiliary functions:

• Year = year_func(Time) ∈ {2000,..,2010}, defined as a
4-character prefix of Time; the latter is assumed to be
encoded as a string;

• Region = region_func(State) ∈ {NORTH, WEST,
SOUTH, EAST}, which is a manually-provided
partition of State and can be expressed as a CASE-
WHEN statement with equality conditions.

Tableau uses an abstract query representation to perform initial
transformations and optimizations. Depending on the type of a
target data source, an appropriate database query is generated.

Assuming that the data are stored in a denormalized relational
table T, both measures and dimensions map to its columns. Also,
the new dimension levels can be expressed as computed columns
in the table’s schema. The required data can be retrieved by the
following SQL query:

SELECT SUM(Profit), SUM(Sales),

Product, Region, Year

FROM T

GROUP BY Product, Region, Year

Note that the data is already grouped to simplify the additional
post-processing on the client.

We continue this example with respect to query processing in the
data engine presented below.

3. SYSTEM OVERVIEW
For the purposes of exposition, it is convenient to view the
Tableau Data Engine (TDE) as being comprised of several layers:

• A storage model;

• An execution engine;

• A query parser and optimizer;

• A communication interface;

• The Tableau VizQL compiler.

This section will give a brief description of each of these pieces;
later sections will focus on the details of the compiler and
execution engine.

3.1 Storage Model
The TDE has a typical three-level logical object namespace of
schemas, tables and columns. For simplicity, this namespace is
stored as a multi-level “directory” structure. Each table is then a
directory that contains column files, each schema is a directory
containing tables and a database is a top-level directory containing
the schemas.

For most tables and columns, metadata is stored in special tables
in the reserved SYS schema. Metadata in the SYS schema (and
other special schemas like TEMP) is kept in yaml key-value files
next to the column, one metadata file per object (column, table,
schema). Object names can then be decoupled from the
underlying file structure.

Column files are of two kinds: a fixed width array of values and
an optional “dictionary” file. When a dictionary is present, the
value array contains dictionary tokens instead of actual values.

The “directory” structure is abstracted to enable implementations
other than the simple file system version described above. The
most important implementation is a read-only implementation that
packages a database as a single file for user convenience

3.2 Execution Engine
The TDE execution engine follows traditional database patterns. It
supports a collection of operators and function primitives. Each
operator implements a certain data processing algorithm and
consumes rows on its optional inputs to produce output rows. A
query plan is a tree of operators. It is executed by iterating over all
the rows of the root of the tree. For the sake of performance, we
employ block processing with a fixed block size and optional
selection vector to mark valid rows [2].

The parser generates query operators, which come in two basic
flavors: streaming (Data Flow) and stop-and-go (Table). The first
ones can process input blocks independently, e.g. a projection that
simply defines new columns in a block. On the other hand, stop-
and-go operators need to consume all the input rows and
materialize the intermediate result before any rows can be output.
An aggregation of unordered data is an example.

In addition to the query operators, there are a number of command
operators that implement DDL statements and miscellaneous
server operations unrelated to query processing.

3.3 Query Parser and Optimizer
Tableau performs an initial analysis of a query to apply general
optimizations valid across many target data sources (see Sect. 5).
Inferences are made using an abstract tree representation of a
query. We based our approach on selected concepts from the
relational algebra.

Most engines use declarative languages and require appropriate
translation of the internal query representation. To make similar
translations straightforward on both ends of the wire for the TDE,
we developed a Tableau Query Language (TQL). It preserves the
semantics and tree structure of an abstract query built on the
Tableau side.

The query parser accepts text commands in TQL and converts
them into an in-memory tree representation. The initial tree
further transformed by the optimizer and converted to an
executable query plan.

3.4 Communication Interface
The Tableau Data Engine runs as a separate process
communicating over standard sockets. The TDE side of the
protocol just reads queries and other commands from the channel
and routes them to a multi-threaded session manager. The results
of the commands are then written to the channel.

In addition to the main communication channel, sessions can be
addressed through a secondary control channel. This channel
supports user interaction with running queries by reporting
progress and allowing the user to cancel long-running queries in a
responsive manner.

Tableau has an internal API that can be used to send and receive
queries from a wide variety of data providers. In addition to a
standard OLE DB/ODBC wrapper, the API can be used to wrap
native implementations, such as the InterBase API used by
Firebird. For the TDE we wrote another implementation of this
API, which translates the operations into wire commands. The
implementation also connects query execution to the user
interface to support progress feedback and query cancellation.

3.5 VizQL Compiler
Visualizations in Tableau are expressed via the VizQL
specification language [1]. The VizQL compiler is a Tableau
subsystem that accepts visualization specifications and generates
relevant database queries for target languages, such as MDX and
SQL. The existing Tableau SQL compiler was generalized to
support TQL as a new relational dialect.

4. COMPRESSION
One of the most important benefits of a column store is the ability
to compress data and then operate on the data in its compressed
form [7]. Operations on compressed data can improve the
performance of a typical analytic query by a factor of two [4]. The
TDE implements two compression strategies: dictionary
compression and run-length encoding. Dictionary compression is
visible in query processing, while the storage engine performs
RLE implicitly.

4.1 Tokens
Columns are simply arrays of a fixed width type. Their content is
accessed through a data stream interface that allows processing
data in portions fitting in memory. Most scalars (such as integers,
doubles and dates) can be directly expressed in this array format.
Such columns are referred to as uncompressed.

Compressed columns come in two forms. Heap compression is
used for variable width types such as strings and array
compression is used for fixed width types such as dates. The data
portion of the column consists of dictionary tokens that reference
members of the dictionary.

Because the data stream of a column is required to be an array,
variable width types can only be stored in heap-compressed
columns. Under heap compression, the tokens are offsets into the
dictionary and the data is stored in the form <length> <data>.
The set of offset is not dense, but they simplify the system by
eliminating an index-to-offset indirection.
Fixed width types may also be compressed using array
compression. In this format, the dictionary is an array of values
and the tokens are indexes into this array. The set of array tokens
is dense, which is a useful property for some operations. Array
compressed columns can take up significantly less space than
their uncompressed equivalent: for example, the TPC-H lineitem
table has a date column that has only about 2500 distinct values.
The TDE’s date type is 4 bytes wide, but by compressing the
column it can be represented by 2 byte tokens, saving 50% on the
storage requirements.
Tokens are just integers, so they can be compared as integers. If
the dictionary entries are all unique then the tokens are said to be
distinct. Distinct tokens can be compared for equality and hashed
consistently without consulting the dictionary. If the dictionary is
also sorted, then the tokens are said to be comparable.
Comparable tokens can be used for sorting and ordered
comparisons.

Because the TDE works on fixed data sets, tables can be
maximally compressed without having to declare the token width
ahead of time – or even whether compression is wanted (e.g.
columns declared enum in [3]). In addition to relieving the
desktop user from the burden of being a DBA, this kind of
maximal compression improves memory bandwidth and creates
opportunities for better hashing.

4.2 Domain Tables
The relationship between a compressed column and its dictionary
resembles foreign/primary key relationship, and this observation
is central to how the TDE handles compression. Decompression
is expressed in queries as a join between the main table’s tokens
and a virtual domain table representing the column’s data
dictionary. One interesting aspect of this approach is that it makes
decompression a high level operation, which can be reasoned
about in a natural way by the query optimizer

The TDE query optimizer can reorder predicates and
computations across joins, reducing the amount of computation
performed. For computations and predicates that only reference a
compressed column, this means that computations can be
performed on the column’s domain instead of on every row of the
table. For example, a computation to extract the year of a date in
the lineitem table can be pushed down to the ~2500 date values in
the domain table and only executed that many times. A filter on
that year can also be applied before the join, further reducing the
size of the join hash table.

4.3 Invisible Joins
Many predicates used in analytic queries consist of simple filters
comparing a data value to a compile time constant. In the case
where the column is compressed, we made use of the “invisible
join” technique of Abadi et al. [4] to compare tokens instead of
values. This necessitates translation of constants to the domain of
the column to which they are being compared.

To enable this translation, TQL compiler makes a pass over the
expression tree and attempts to attach a domain name to each
constant. When the constant node is evaluated for the first time,
the domain column can be looked up in the input name space and
the value looked up in the column dictionary. If it is found, then
the constant column is replaced with one that contains the
constant’s token and shares the dictionary with the domain
column.

When the function node that references the constant and its
domain column is evaluated, it attempts to use a version of the
function that uses tokens instead of values. In the case of a
comparison function (such as equals) this will lead to comparing
tokens instead of compressed values.

Other functions may not support this optimization, but in that case
sharing the dictionary does no harm (dictionaries are not copied,
just referenced). For example, the find(string,string) function may
coincidentally have a second constant argument that is in the
domain of the first column, but since find does not support use of
tokens, the string implementation will be used.

4.4 Lookups
While invisible joins are invaluable for improving the
performance of simple predicates, Tableau typically expresses
complex filters and other functions using joins. This led us to an
extension of invisible joins called the lookup function.

4.4.1 Multidimensional Functions
Tableau allows users to generate complex multidimensional filters
by selecting points in a visualization (such as a scatter plot) and
either including or excluding them. The default implementation of

the filter as a large sum-of-products expression tree is unwieldy
both in the ability of a database to optimize it and in some cases is
simply too large for the server’s query buffer (e.g. Firebird has a
64KB query buffer). Such filters are more naturally represented as
a lookup table containing the list of key sets to be included or
excluded and a constant output column containing “true”. Include
filters are then expressed as inner joins and exclude filters are
expressed as left outer joins followed by a predicate asserting that
the output Boolean column is null.

Filters are a special case of a more general multidimensional
function implemented via a lookup table. Tableau generates such
functions in the form of the group calculation. A group is a
mapping that collapses several values of a column into a single
value. Typical use cases of this feature include higher level
dimensional modeling and data cleaning. For example, a data set
may contain sales data by state but the analysis requires the
aggregation to be by sales region, which is not modeled. Or the
data may contain states with variant names and the group can be
used to combine the variant spellings. The user can define a
grouping on the state column, which simply maps each state
variant to its group.

The VizQL compiler attempts to implement such functions by
creating temporary tables and joining them to the main relation.
While the TDE allows the creation of such temporary tables for
joining, the joins are often keyed on multiple string columns,
which can lead to inefficient joins because the database is
unaware that the inner table columns have domains that are
subsets of the outer table. Solving the problem was the
motivation for our new Lookup operator.

4.4.2 Hashing for Joins
The TDE supports a number of hashing algorithms for
implementing equi-joins. The basic hash algorithm computes a
hash, probes the inner table and then checks for collisions. If a
collision is detected, it is added to a separate collision list for that
hash value as in Zukowski et al. [5] that is checked sequentially
whenever the hash value is encountered.

Collision checking can result in random access to the inner table,
which can lead to serious performance degradation. Avoiding
collisions is therefore quite desirable and the TDE implements a
number of faster hashing algorithms that avoid collision detection
and which can be used preferentially if their preconditions are
met.

The width of a column for the purposes of hashing is the number
of bits needed to represent a value in the column’s data stream.
For uncompressed columns, this is just the number of bits in the
representation itself. For compressed columns with distinct
tokens, the width is the size of the tokens, which in a fully
compressed column is reduced to the minimum number of bytes
needed to represent all the dictionary entries.

TDE hash values are 32 bit quantities and if the input columns
have a total bit width of 32 bits or less, a perfect hash function can
be constructed by concatenating the data bytes, which avoids the
need for collision detection. The result is then run through a
reversible mixer with good avalanche properties to make the bits
more amenable for hash table lookups.

If the total number of bits being hashed is 16 or less, then an even
simpler system of radix hashing may be used [2]. The bytes are

concatenated with no mixing and used to index a 64K translation
table.

Finally, if there is only one integer join column that is both dense
and ordered ascending in the inner table, then the mapping from
hash function to inner row id is essentially an identity (or at worst
an affine transformation.) In such a Fetch join [2], no translation
table indirection is required, which not only improves
performance through reducing (or eliminating) computation but
also avoids consuming valuable cache resources to contain the
translation table.

4.4.3 Lookup
Given the constraints of the hashing system, it is desirable to
reduce the width of the join columns in a filter or lookup table as
much as possible. The simplest reduction would be to use the fact
that each pair of join columns shares a domain. When the column
is compressed (as is always the case for strings) the inner join
column’s dictionary is a subset of the outer join column’s and we
can replace the inner column with a copy that uses the outer
column’s dictionary and tokens instead of its own. This allows
the hash algorithms to use tokens instead of the larger string
values that they represent, which in turn can enable the system to
use a more efficient hash algorithm for the join.

To take advantage of this optimization, the query compiler needs
to be aware of the semantics of the join. TQL allows the direct
expression of such functions by defining the lookup pseudo-
function. Lookup takes a table, a list of column bindings to define
the arguments and the name of a result column to produce as
output. An optional “else” value can also be specified in the case
of no match.
A special operator that is derived from the Join operator
implements Lookup. It post-processes the construction of the
inner table by attempting to rebuild the inner join columns to
match the tokenization of the outer join columns. If it fails, it
simply leaves the column alone for the default join hashing to
handle.

4.5 Run Length Encoding
Unlike many column stores [7] that employ multiple forms of
compression, the Tableau Data Engine does not attempt to operate
on all these forms of compression. Instead of trying to operate on
a range of compressed data formats (run-length-encoding, delta
etc.), we have elected for simplicity to operate on the dictionary
directly in the common case where a single column is involved in
a computation. Further compression can then be applied to
dictionary tokens at the stream level, which avoids forcing the
query compiler to reason about the locality inherent in many other
compression schemes. The case where two different compressed
columns are used in the same expression was not optimized
because unless the columns are correlated in some way that is
reflected in their respective compression techniques, it did not
seem that there was any benefit to doing so.

There is still a benefit, however, in lightweight compression for
the purposes of reducing disk I/O, especially on the wide range of
systems that are the targeted operating environment. Accordingly,
the TDE will also attempt to run-length encode the data streams
for columns that have been sorted or have very low cardinality. In
addition to reducing disk I/O this form of compression offers the
possibility of skipping large blocks of rows during scan. This
optimization will be the subject of future work.

This form of decompression is implemented at the stream level
rather than at the compiler level. A column seeks to the next
block of rows in its data value stream and the stream
decompresses the data into an internal buffer. In this sense the
system resembles the disk compression utilities popular in the late
1990s, which would compress data at the driver level.

5. QUERY OPTIMIZATION
Tableau is compatible with a wide spectrum of data sources,
including text files, Excel, popular DBMSs, OLAP systems and
the TDE server introduced in this paper. In order to generate more
efficient queries, the initial optimization happens on the Tableau
side of the wire.
The extent of Tableau optimizations is restricted by the data
source input language, which in most important cases is
declarative, e.g. SQL or MDX. Further more sophisticated
optimization and target query processors perform actual plan
generation.

Building on the optimization techniques used in the MonetDB
database [3], we partitioned optimization of the query into what
are called tactical and strategic optimizations. Strategic
optimizations are query plan level choices such as operator
reordering. Tactical optimizations are performance choices made
during execution based on the actual data flowing through the
system at a point in time, such as which hash function to use.

The TDE uses this partitioning to reduce the space of query
optimization options. In fact, one ought to be able to compute
most things ahead of time, but in practice, we have found that it
simplifies system design by having orthogonal concerns
implemented separately.

5.1 Tableau-side Optimization
Certain optimization techniques can be applied across many
supported engines. Tableau uses an abstract query representation
based on concepts from relational algebra to perform relevant
transformations. A resulting tree is further translated to an engine-
specific query.

Figure 2. Query structure for the visualization from Fig. 1.

Figure 2 shows a relational representation of the query considered
in Sect. 2. This simple scenario involves scanning the table T,
computing additional columns and aggregating measures. Slow
computations, such as string operations or complex case-
statements, may significantly affect query performance. A
potential improvement can be gained by pre-computing the
expression values for all feasible combinations of referenced
columns. The result is further stored in a separate lookup table
joined with the main table. In our case, one can evaluate

region_func(State) for all possible states and later join with T on
State.

Although queries are created ad hoc, calculated fields are defined
by users and are likely to be referenced in many queries.
Expensive computations may be evaluated once and materialized
as a new column of a fact table. It is a potentially costly DDL
operation of a run time of the order of the size of the fact table.
Therefore, materialization of user-defined computations is not
performed automatically but can be triggered by the user as
extract optimization.

Note that optimizations can be applied as long as a target database
supports necessary features, e.g. creation of temporary tables.

5.2 Strategic Optimization
The TDE is equipped with a query rewriter responsible for
transforming a parsed query tree into a form supported by the
execution module. Besides optimizations, it implements complex
operations, such as quantile or count distinct computation, by
means of more basic operators, so that compilation of a final
execution plan is straightforward.
We use a relational data model, where an extract is represented by
a set of tables. Facts and dimensions are stored in a single table in
a denormalized form. In addition, Tableau may create other
auxiliary tables, e.g. to look up computations results.
TQL queries generated by Tableau process the data from the fact
table performing desirable computations, filtering, aggregations,
etc. Compressed dimension columns are treated as their values
were present in the table and implicitly handled during plan
generation. In fact, tokens may be sufficient for certain operator,
such as grouping or sorting. In our example, the values of Product
are not necessary to perform the aggregation and they need to be
retrieved only at the end to prepare the final result set. Otherwise,
decompression is implemented by introducing foreign key joins to
appropriate internal dictionary tables.

Figure 3. Query structure for the visualization from Fig. 1
after expanding compressed columns to joins and pushing

down calculations.
Significant efficiency gain can be obtained by appropriate
placement of filters and computations in a plan. The way
compressed dimensions are expanded into joins allowed us to
leverage classic methods known from the literature [10].

In fact, our reordering heuristics are designed for the most
common case of left-deep trees with a fact table as the left-most

leaf. We assume that a subtree referencing a fact table always has
higher cardinality than subtrees referencing only dictionary tables.
Joins are assumed to have the same fractional selectivity.
Similarly, selections are believed to have the same fractional
selectivity and are more selective than joins. Finally, all
computations have the same positive costs.
As a consequence, selections are pushed down as close to relevant
tables as possible. Computations involving a single compressed
column are performed on corresponding dictionary tables.
Otherwise, they are pulled-up in the tree as far as possible, since
subsequent joins are most likely to reduce cardinality.

Figure 3 shows the original query after expanding compressed
columns Time and State to joins that fetch their actual values.
These columns are involved the calculations defining new
columns Year and Region. In fact, these calculations could be
pushed down to domain tables DTime and DState.

Some columns are required only up to some point in a tree, e.g.
their values are used for data partitioning or computation. Since
carrying them over to the root would defeat the purpose of
column-oriented processing, appropriate restriction projections are
placed in the plan. In the considered example, one needs only the
Product, Sales, Profit, Time, State columns from the fact table.
Also, the Time and State token columns can be restricted right
above a respective join.

5.3 Tactical Optimization
When a query operator is invoked for the first time, it needs to
settle the metadata description and set up the data storage for its
output columns before it can begin operation. This process is
called column finalization. During this process the complete
metadata of the column is defined, data columns are allocated and
any dictionaries that can be shared are identified.
For leaf tables, the process is straightforward: the data streams for
each column are read from the data store and attached to the
columns of the operator.
Operators that compute values, such as Project and Aggregate,
need to perform late binding of the functions used in their
computation expression trees based on the newly available type
information. For constant expressions, this may include
translating the constant into the dictionary of the domain that the
constant is associated with as described in section 3.3 – a decision
that cannot be made without having the actual dictionary
involved.

Operators that can work with compressed data need to know if the
tokens have needed properties like being distinct or comparable.
These properties may depend on the actual results of calculations,
which cannot be known at plan generation time. For example,
strings generated by left(limeitem.l_comment, 3) may have low
enough cardinality that the column’s heap can tell that the strings
are all unique (e.g. its internal hash table did not overflow.)

Join and Aggregate nodes also need to decide upon a grouping
strategy. If the join fields or aggregation list are not empty, then
various hashing strategies need to be considered based on detailed
consideration of the grouping column metadata. In the case of the
Lookup operator, this choice cannot be made until runtime
because the coercion of compressed column data to a single
dictionary representation is not known until run time when all the
data has been loaded and computed.

Order and TopN nodes have to perform late binding of their sort
functions based on the data type of the column, which may
depend on the actual data involved. For example, a string column
may be computed by an expression and coincidentally produce
ordered dictionary tokens (not because the data is sorted, but
because new values are inserted into the dictionary in order.) This
column can then be sorted on its tokens rather than on its string
values.

6. VISUALIZATION SUPPORT
6.1 Domain Metadata
The TQL language, allowing Tableau to query directly for column
domains, supports the domain table abstraction described earlier.
In addition, the metadata for each column may contain the
cardinality of the domain and other useful metadata such as the
minimum and maximum values. These latter can be used by the
user interface to choose an appropriate level of detail for a date
hierarchy.

6.2 Progress and Cancel
Despite our best efforts, there will be queries that require
noticeable processing time. In such cases, the user experience
benefits from feedback on how a query is progressing and the
ability to cancel long running queries. Cancellation is especially
important in an interactive exploratory environment such as
Tableau where a user may be dragging fields out in an attempt to
build a visualization and may not be interested in intermediate
results produced by an incomplete VizQL specification.

The TDE provides sideband progress reporting and cancel control
for all queries. Progress is reported using the driver node
estimator system described in [9] and includes upper and lower
bound estimates. Cancel requests are handled by a separate thread
and passed on to all Scan nodes and any other nodes that perform
large amounts of internal processing (e.g. Order).

7. EXPERIMENTAL EVALUATION
The primary reason for building a new data engine was
inefficiency of row-oriented databases against an analytic
workload. We demonstrate that the TDE gives a significant
performance improvement over the previously used Firebird
database and comparable performance to MonetDB [3].
All experiments were conducted on a single DELL machine with
Intel Xeon E5520 with two 2.27GHz physical cores, 12Gb of
RAM and running 64-bit Windows 7.

7.1 TPC-H Results
Figure 3 shows a performance comparison of the TDE against
Firebird and MonetDB conducted against a subset of the TPC-H
benchmark [6]. The test database was generated at SF=1 for all
three servers using vendor-supplied translations of the TPC-H
queries and build scripts. Each test was run 5 times in the same
hardware with the data set warm in the disk cache and the results
were averaged. Output was redirected to a file for all three
databases.

Figure 3. Execution times for selected queries from TPC-H for

Firebird, MonetDB and the TDE.

Replacing Firebird with the TDE brings improvement of 1-3
orders of magnitude. At the same time, due to generally similar
design principles, the TDE shows performance comparable with
MonetDB.
Extract files created for Firebird, MonetDB and the TDE had sizes
of 1.9 Gb, 1.06Gb and 641Mb respectively. The Firebird page size
was set to 8Kb. The significant differences result from page
allocation strategies in Firebird and compression in the TDE.

7.2 Flights Results
Tableau generates specific classes of queries. We prepared an in-
house benchmark, called Flights, that represents a data exploration
session. The data set has a 70M row fact table containing 10 years
of FAA on-time flight statistics for the US.

Figure 4. Execution times for selected queries from TPC-H for

Firebird and the TDE.

Figure 4 shows performance comparison for Firebird and the TDE
for a 0.5M row fact table. This significant data set reduction was
required to let Firebird successfully process the queries. For
brevity, we partitioned the testing workload into six categories
and reported sums of individual query times. Again we warmed
the caches and averaged the results over 5 runs.
We observe a similar performance impact of 1-2 orders of
magnitude and impact of compression on database sizes. Extract
files for Firebird and the TDE had 221Mb and 45Mb,
respectively.

7.3 Integration Testing
The TDE was developed at Tableau over the course of 18 months
and first deployed commercially in the fall of 2010. In addition to
the benchmark tests just described, the TDE has been through a
full release test cycle including internal testing, automated test
suites and an external beta testing using real customer data. The
Tableau automated test suites include about 1000 correctness tests
that are applied on a daily basis to all supported versions of the
databases supported by the product including the TDE.

8. CONCLUSIONS
In this paper, we introduced the Tableau Data Engine, a
specialized column store modeled after MonetDB. The new
engine is an integral part of the Tableau 6.0 release. It provides
significantly faster data processing for Tableau Desktop. In
addition, it is a default extract engine for Tableau Server and, in
our opinion, it remains a convenient alternative for a wide group
of customers who do not own a dedicated analytic database
server.

The TDE meets our functional and non-functional requirements
for an extract engine and brings 1-3 orders of magnitude
improvement over the previously used Firebird database. This
enables true interactivity in exploration of large data sets with
hundreds of millions of rows.

Importantly, developing an own analytic data engine removed a
strong dependency of our product on a third party database. We
control both ends of the wire, therefore, we can relatively easily
introduce new analytic functionality to Tableau with an efficient
implementation in the TDE. Also, particular performance issues
can be addressed directly in the engine.

Compression plays an important role in efficient processing of
column-oriented data. In the future we would like to support some
other forms of stream compression such as delta encoding (for
columns with local ordering) and bit field encoding (for columns
with very small member counts.)

Furthermore, we intend to collect more statistical information on
data and employ some traditional optimization strategies during
plan compilation, such as heuristic join reordering or incremental
execution.

As far as the throughput is concerned, the TDE can run multiple
independent queries at the same time allocating them to separate
processor cores. While a sufficient strategy for the Tableau
Server, the desktop application suffers from highly inefficient
usage of system resources for serially submitted queries. We plan
to address cases of slow computations and aggregations with
intra-query parallelism.

Last but not least, the TDE server may require extensions with
respect to resource governing, administering and monitoring.
Also, we plan to perform extensive scalability and availability
study.

9. ACKNOWLEDGMENTS
Our thanks to the rest of the TDE team (Ken Ross, Chris Stolte
and Pat Hanrahan.) We are also grateful to Stefan Manegold and
other members of the CWI group for advice and inspiration.

10. REFERENCES
[1] Stolte, C., Tang, D., and Hanrahan, P. 2008. Polaris: a

system for query, analysis, and visualization of
multidimensional databases. Commun. ACM 51, 11 (Nov.
2008), 75-84.

[2] Boncz, P., Zukowski, M., and Nes, N. MonetDB/X100:
Hyper-Pipelining Query Execution. In International
Conference on Innovative Data Systems Research (CIDR),
Jan. 2005, 225-237.

[3] Boncz, P. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. Doctoral Thesis, Universiteit
van Amsterdam, Amsterdam, The Netherlands, May 2002.

[4] Abadi, D. J., Madden, S. R., and Hachem, N. 2008. Column-
stores vs. row-stores: how different are they really? In
Proceedings of the 2008 ACM SIGMOD international
Conference on Management of Data (Vancouver, Canada,
June 09 - 12, 2008). SIGMOD '08. ACM, New York, NY,
967-980.

[5] Zukowski, M., Héman, S., and Boncz, P. 2006. Architecture-
conscious hashing. In Proceedings of the 2nd international

Workshop on Data Management on New Hardware
(Chicago, Illinois, June 25 - 25, 2006). DaMoN '06. ACM,
New York, NY, 6.

[6] http://www.tpc.org/

[7] Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X.,
Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S.,
O'Neil, E., O'Neil, P., Rasin, A., Tran, N., and Zdonik, S.
2005. C-store: a column-oriented DBMS. In Proceedings of
the 31st international Conference on Very Large Data Bases
(Trondheim, Norway, August 30 - September 02, 2005).
Very Large Data Bases. VLDB Endowment, 553-564.

[8] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
2007. The end of an architectural era: (it's time for a
complete rewrite). In Proceedings of the 33rd international
conference on Very large data bases (VLDB '07). VLDB
Endowment 1150-1160.

[9] Chaudhuri, S., Narasayya, V., and Ramamurthy, R. 2004.
Estimating progress of execution for SQL queries. In
Proceedings of the 2004 ACM SIGMOD international
Conference on Management of Data (Paris, France, June 13
- 18, 2004). SIGMOD '04. ACM, New York, NY, 803-814.

[10] Hellerstein, Joseph M. 1994. Practical predicate placement.
In proceedings of SIGMOD. ACM, New York, NY

[11] Slezak D., Eastwood V..2009. Data warehouse technology
by infobright. In proceedings of SIGMOD. ACM, New
York, NY

