Inferencing Underspecified Natural Language Utterances in
Visual Analysis

Vidya Setlur*
Melanie Tory"
Alex Djalali*

Tableau Software
Palo Alto, California 94306

ABSTRACT

Handling ambiguity and underspecification of users’ utterances is
challenging, particularly for natural language interfaces that help
with visual analytical tasks. Constraints in the underlying analytical
platform and the users’ expectations of high precision and recall
require thoughtful inferencing to help generate useful responses. In
this paper, we introduce a system to resolve partial utterances based
on syntactic and semantic constraints of the underlying analytical
expressions. We extend inferencing based on best practices in infor-
mation visualization to generate useful visualization responses. We
employ heuristics to help constrain the solution space of possible
inferences, and apply ranking logic to the interpretations based on
relevancy. We evaluate the quality of inferred interpretations based
on relevancy and analytical usefulness.

CCS CONCEPTS

* Human-centered computing Interaction techniques; Text
input.

KEYWORDS

natural language interface, visual analysis, inferencing

ACM Reference Format:

Vidya Setlur, Melanie Tory, and Alex Djalali. 2019. Inferencing Under-
specified Natural Language Utterances in Visual Analysis. In 24th Interna-
tional Conference on Intelligent User Interfaces (IUI ’19), March 17-20,
2019, Marina del Ray, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3301275.3302270

1 INTRODUCTION

Ambiguity and underspecification in language are prevalent in any
form of communication, but is not necessarily an issue with human-
to-human interaction [5]. Humans are adept at disambiguation by
clarifying and repairing utterances. The issue of underspecificity in

“vsetlur@tableau.com
“mtory @tableau.com
*adjalali @tableau.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

1UI ’19, March 17-20, 2019, Marina del Ray, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6272-6/19/03. .. $15.00
https://doi.org/10.1145/3301275.3302270

language transcends to computer systems, particularly web search
systems. Research shows that queries often come out ambiguous or
underspecified, especially with the increase of mobile device usage
in recent years [28]. Similarly, supporting natural language interac-
tion with visual analytical systems is often challenging. First, users
tend to type utterances that are linguistically simple and underspeci-
fied, while the visual analytics system has more complicated nuances
of realizing these utterances against the underlying data and analyti-
cal functions. Second, users expect high precision and recall from
such natural language interfaces. Unlike web search systems relying
on document indexing, visual analytical systems are constrained by
the underlying analytical engine and data characteristics.

A ‘smart’ system can attempt to effect a match between the con-
cepts in the utterances and the concepts known by the system. While
follow-up repair utterances can help resolve ambiguities that a natu-
ral language interface may encounter, such systems are often con-
strained by the domain of the knowledge base or context in which
the interaction occurs. In addition, analytical concepts may not map
directly from utterances to the underlying information. For example,
a user may be looking at housing data in a particular neighborhood,
and type in an utterance, “show me homes with good schools and
at least 2 bedrooms.” If the concept of good is not present in the
underlying data, then the user’s intent is rather ambiguous. The sys-
tem would need to infer good to be perhaps a low crime rate, good
school ratings, or a great walking score.

A successful user interaction may involve refining the utterance
based on results and reformulating the query strategy if the utterance
is too broad, narrow, or misformulated. While repair through follow-
up utterances or employing a mixed initiative approach [12, 17, 34]
is prevalent, inferencing can help determine the mapping of the intent
posed by terms used in these natural language utterances, and provide
sensible defaults to the user [23]. Most intelligent interface designs
assume to one degree or another that the user will be “kept in the
loop” to negotiate with the system, resolving ambiguities, making
relevancy judgements, and revising searches based on feedback
provided by the system [36].

The tendency for users to employ underspecified utterances in
data analytics was recognized as early as 2010 by Grammel et
al. [14] and has been similarly observed in other domains (e.g. [25]).
A recent Wizard Of Oz study that we conducted (unpublished) re-
inforced the need for inferencing to support underspecification. We
found that nearly all input utterances were underspecified in some
way. For instance, visual encodings were nearly always incomplete
or left out, and were often specified indirectly as an analytical goal

https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270

IUI’19, March 17-20, 2019, Marina del Ray, CA, USA

average Profit by Customer Name, sort Customer Name in descending order by average Profit

Bar Chart

(a) “sort customers by their profit”

sum of Profit by Order Date’s year

Yesr of Ordor Dite

(b) “what’s my profit over time?”

sum of Number of Strikes by Origin State as a map

M
Number of Strikes

(c) “show me all the strikes on a map”

Figure 1: System inferences made for underspecified utterances
during visual analysis. (a): Infers a descending sort order to
sort Customer Names by Profit. (b): A user expresses an intent
of ‘time’ that is resolved to a time attribute Order Date aggre-
gated at its year level. (c): Infers a geographical attribute, State,
in order to display the number of bird strikes in a map employ-
ing user popularity data and heuristics for analytical usefulness.
Note: The canonical form is displayed on top of each figure for
legibility while the input utterance is shown in the caption.

(e.g. ‘correlation’). Here we introduce an inferencing system for han-
dling underspecification, grounded in our empirical data of language
cues that indicate intent as well as expected behavior.

2 RELATED WORK

Inferencing underspecified queries in web search
Underspecified utterances and ambiguity are prevalent in web search

Vidya Setlur, Melanie Tory, and Alex Djalali

systems - whether the large inventory of documents indexed by
search, the esoteric collections in niche engines, or simply because
users make assumptions of what the search system interprets from
their queries. One challenge is the problem of irrelevant search
results. Such search results usually arise due to ambiguous queries
or semantic mismatches.

Search engines have utilized the notion of context to help restrict
the ambiguity space. By processing searches in the context of the
information surrounding the queries, search results can better reflect
the user’s actual intentions [6]. IntelliZap selects important context
words and performs word sense disambiguation to prepare a set of
augmented queries for subsequent search [1]. Sajjad et al. proposed
a question generation system for handling underspecified queries
from domain-specific search engines [30].

Search diversification is another technique employed by web
search to satisfy as many intents as possible behind an underspecified
query [7]. When a search engine receives an ambiguous query and
has limited knowledge about the user’s intent, the system can present
a diversified result list that covers several interpretations of the
query. Diversification algorithms explore modeling the probabilistic
knowledge of user intent, document classification, and how many
relevant documents a user will require to maximize the probability of
satisfaction when posing ambiguous queries [32, 44]. Other research
focuses on optimizing search result presentation for queries with
diverse user intent by selectively presenting query suggestions for
leading users to more relevant search results [2, 3].

Another cause for irrelevant results is the ‘one-size-fits-all’ ap-
proach where an identical query from different users in different con-
texts generates the same set of results. To improve search relevancy,
systems have focused on generating a personalized search result list
based on based on the user’s profile [27, 39]. Search personalization
can also employ machine learning from human relevance judgments
such as click-through interactions [37]. Other approaches perform
web query disambiguation based on predictions from short glimpses
of user search activity using statistical learning models [24].

Inferencing underspecified queries in visual analytics
Similar to web search systems, natural language interfaces for visual
analysis need to be able to interpret a broad range of utterances
to keep users in their analytical workflows. DataTone inferred a
user’s intent, producing a chart according to that inference, and then
providing ambiguity widgets through which the user could adjust the
system’s default choice [12]. Eviza and Analyza supported simple
pragmatics in analytical interaction through contextual inferencing,
wherein context established by the preceding dialog was used to
create a complete utterance [11, 34]. Evizeon [17] and Orko [38]
extended the notion of pragmatics in analytical conversation by using
the knowledge of data attributes, values, and data related expressions.
Ambiguity was handled with targeted textual feedback and ambiguity
widgets. Inferencing however, was limited to only filtering in the
analytical workflow.

Our work focuses specifically on enhancing the notion of infer-
encing for underspecified utterances during an analytical workflow.
Leveraging semantic and syntactic constraints posed by VizQL [40]
as well as applying heuristics from best practices in the field of infor-
mation visualization, we can support a richer repertoire of analytical
expressions.

Inferencing Underspecified Natural Language Utterances in Visual Analysis

3 CONTRIBUTIONS

In this paper we introduce a natural language system for resolving
ambiguity and underspecification in natural language utterances.
Our system infers data attributes and appropriate visualizations that
help satisfy the intent in the utterances. In Figure la, our system
infers a descending sort order, matching typical user expectations
that the highest value will be at the top. Our algorithm can also make
sensible inferencing to map an abstract concept such as ‘time’ to an
appropriate time attribute (Figure 1b). Further, with data involving
hierarchies such as time and geography, the system can infer data
attributes at an appropriate level of detail, ranking more salient
geographical attributes such as ‘State’ over inferring a ‘Postal Code’
(Figure 1c).

The contributions of this paper can be summarized as follows:

e We introduce a lightweight, intermediate language, Arklang
to resolve natural language utterances to formal queries that
can be executed against a visual analytics system.

e We describe a set of inferencing techniques based on syntac-
tic and semantic constraints of partial analytical expressions
and to handle vague concepts. We also support visualiza-
tion responses explicitly requested by users through inferring
meaningful data attributes.

e A relevancy metric is employed to identify a set of valid
inferences based on data popularity, the constraints of the ana-
lytical system as well as drawing from principles of effective
graphical data presentation.

e The system provides a set of interaction widgets to provide
other relevant options to the users for overriding and clarify-
ing inferencing defaults.

e We validated the appropriateness of our inferencing approach
through a survey; respondants assessed the quality of visu-
alization responses for a diverse set of underspecified input
queries obtained from log data collected in a two month de-
ployment of our system.

4 SYSTEM OVERVIEW

Conventional query languages such as SQL are powerful from a
mathematical perspective, but are not conducive for natural language
parsing. This is because users’ input utterances tend to be more
colloquial with less semantic and syntactic rigor when compared
to a database query language. Implementing natural language inter-
faces for databases that can map user utterances to a query language
can thus be challenging. The grammar rules underlying their syntax
must be coerced into Chomsky Normal Form [9] to be available for
standard natural language parsing techniques. While statistical and
machine learning techniques can be employed, manually authoring
and tuning a grammar for each new database is brittle and prohibi-
tively expensive. In addition, to parse questions posed to a particular
database, the statistical parser would need to be trained on a corpus
of questions specific to that database. Several systems have devel-
oped natural language interfaces to databases [4, 15, 16, 20, 26].
Such systems introduce semantically tractable sentences that can
be translated to a unique semantic interpretation by analyzing lexi-
cons and semantic constraints of the underlying databases. Inspired
by this previous work, we implement a lightweight, intermediate

IUI’'19, March 17-20, 2019, Marina del Ray, CA, USA

language, ArkLang, to represent an intermediate logical query gener-
ated from an utterance, focusing specifically on visual analysis tasks
based on the semantic constraints of VizQL [40].

ArkLang is designed to resolve natural language utterances to
formal queries that can be executed against a visual analytics system.
We lexically translate the natural language utterance into ArkLang,
and then compile ArkLang into a series of instructions employing a
visualization query language, VizQL [40] to issue a query against a
database. VizQL is a formal language for describing tables, charts,
graphs, maps, time series and tables of visualizations. These differ-
ent types of visual representations are unified into one framework,
coupling query, analysis and visualization. This declarative language
facilitates transformation from one visual representation to another
(e.g. from a list view to a cross-tab to a chart).

In order to perform a lexical translation from natural language
into ArkLang, we require a lexicon mapping natural language words
to their ArkLang concepts, which in turn are mapped to their corre-
sponding VizQL counterparts. To help with inferencing and choosing
salient attributes and values, we leverage a Semantic Model (SM)
derived directly from the underlying database. The SM represents
the database schema and contains metadata about attributes, such as
alternative labels, or synonyms. Various data types (i.e., ‘text,” ‘date,
‘geospatial,” ‘boolean,” and ‘numeric’) and attribute semantics are
stored, such as currency type (e.g. United States Dollar) and seman-
tic role (e.g. ‘City’ role for a geospatial attribute). Statistical values
such as the data distribution, range limits, average, cardinality are
also captured for each attribute. The Semantic Model is augmented
with a set of analytical concepts found in many query languages
(e.g., average, filter, sort). It also distinguishes between attributes
that are measures (i.e. attributes that can be measured, aggregated,
or used for mathematical operations) and dimensions (i.e. fields that
cannot be aggregated except as count). Popularity scores are also
computed and associated with each attribute, indicating how often
the attribute is used in visualizations generated from the datasource.

4.1 Formal Representation

ArkLang describes a formal query language that can be generated
from a set of Semantic Models representing their corresponding
databases, a context free grammar (CFG) [9], and a set of semantic
constraints. By a dialect of ArkLang, we mean the set of all syn-
tactically valid and semantically meaningful analytical expressions
that can be obtained by fixing a particular SM and leveraging our
fixed CFG and fixed set of semantic constraints. We use a Cocke-
Kasami-Younger (CKY) parsing algorithm that employs bottom-up
parsing and dynamic programming on CFGs [19]. The input to the
underlying CKY parser is this context-free grammar with production
rules augmented with both syntactic and semantic predicates based
on analytical expressions that correspond to five basic database oper-
ations found in VizQL [40] and are shown in Figure 2. The analytical
concepts in ArkLang are defined below:

e Fields are a finite set of database attributes. E.g., ‘sales’,
‘product category.’

o Values are a finite set of database values. E.g., ‘$100°, ‘Avery
Leckman.’

e Aggregations are a finite set of operators where the values
of multiple rows are grouped together to form a single value

IUI’19, March 17-20, 2019, Marina del Ray, CA, USA

sum of Price by Country as a map

e

(a) “what’s the sum of price for each country?”

average Points by Winery, top 5 Wineries by average Points
A1 oGt

100000

ico
v I 7 00
—

Aug. Pints

(c) “top 5 wineries by average points”

Vidya Setlur, Melanie Tory, and Alex Djalali

sum of Number of Records by Winery with Country in France

Number o Records

(b) “wineries in france”

average Price by Winery, sort Winery in descending order by average Price

1) B Crn

"

(d) “sort wineries by average price”

Figure 2: Five basic analytical expressions supported in ArkLang. (a) An aggregation expression ‘“sum of Price” with a group expres-
sion “by Country", (b) A filter expression “in France”, (c¢) A limit expression “top 5 Winery”’, (d) A sort expression “sort Winery”’.

based on a mathematical operation. E.g., ‘average’, ‘median’,
‘count’, ‘distinct count.’

e Groups are a finite set of operators that partition the data into
categories shown in a data visualization. E.g., ‘by’ a field.

e Filters are a finite set of operators that return a subset of the
field’s domain. E.g., ‘filter to’, ‘at least’, ‘between’, ‘at most.’

e Limits are a finite set of operators akin to Filters that return a
subset of the field’s domain, restricting up to n rows, where
1 <n < N. N is the total number of rows in the domain. E.g.,
‘top’, ‘bottom.’

e Sorts are a finite set of operators that arrange data rows in an
order, i.e., ‘ascending’, ‘descending’, ‘alphabetical.’

With these analytical concepts defined in ArkLang, we can sup-
port various analytical expressions. To address the problem of prolif-
eration of ambiguous syntactic parses inherent to natural language
querying, our system assigns canonical representations to these
analytical expressions [10]. These canonical structures are unam-
biguous from the point of view of the parser and our system is able
to choose quickly between multiple syntactic parses. For example,
instead of enumerating all possible phrases, the grammar returns a
deterministic output for a given input utterance. Here is the set of
basic analytical expressions, along with their canonical forms in the
ArkLang dialect with examples shown in Figure 2. Note that the
canonical forms are shown at the top of each figure for legibility
reasons with the input utterances in their corresponding captions.

o Aggregation expression: If agg € Aggregations and att is an
Attribute with the canonical form [agg att]; (e.g., “average
Sales” where ‘average’ is agg, ‘Sales’ is att).

e Group expression: If grp € Groups and att is an attribute with
the canonical form [grp att]; (e.g. “by Region” where ‘by’
is grp, ‘Region’ is att).

o Filter expression: If art is an attribute, filter € Filters, and
val € Values with the canonical form [att filter val];
(e.g.,"“Customer Name starts with John”” where ‘Customer’ is
att, ‘starts with’ is filter, ‘John’ is val).

o Limit expression: If limit € Limits, val € Values,
ge € group expressions, and ae € aggregation expressions with
the canonical form [1imit val ge ae];(e.g., “top 5 Winer-
ies by sum of Sales” where ‘top’ is limit, ‘5’ is val, ‘“Wineries’
is the attribute to group by, ‘sum of Sales’ is the aggregation
expression).

o Sort expression: If sort € Sorts, ge € group expressions, and
ae € aggregation expressions with the canonical form [sort
ge ae]; (e.g., “sort Products in ascending order by sum of
Profit” where ‘ascending order’ is the sort, ‘Products’ is the
attribute to group by, ‘sum of Profit’ is the aggregation ex-
pression).

In VizQL, expressions referencing unaggregated datasource columns
are computed for each row in the underlying table [40]. In this case,
the dimensionality of the expression is row-level. Expressions ref-
erencing aggregated data source columns are computed at the di-
mensionality defined by the dimensions in the view. In this case,
the dimensionality of the expression is view-level. ArkLang sup-
ports these levels of detail with the concept of an attribute and
a corresponding aggregation expression. Such embeddings allow

Inferencing Underspecified Natural Language Utterances in Visual Analysis

us to ask higher-order analytical questions involving level of de-
tail. ArkLang’s recursive structure allows us to formulate filtration
conditions at multiple levels of detail, supporting filtration at both
row- and view-levels. Let us assume that our data contains a Sales
attribute with underlying numeric values. ArkLang is expressive
enough to formulate row-level filter expressions like “sales at least
$100.” Similarly, “by country, average sales at least $100” is a view-
level filtration condition that removes any sets of rows grouped by
the Country attribute whose average per the Sales attribute is not
greater than $100.

The translation from natural language input to VizQL commands
for generating a visualization response, is implemented in Algorithm
1.

Algorithm 1: Natural language translation to VizQL

Input: natural language token

Output: VizQL

Let f be a translation function mapping a natural language
word, e.g. into an ArkLang concept ‘average’.

Let g be (a top-down recursive) translation function mapping
analytical expressions of ArkLang to VizQL.

Then £ is defined as the composition of f and g mapping a
natural language into VizQL.

1 Perform a lexical translation from natural language into
ArkLang, e.g., f(mean) = f(avg) = average and f(wine
prices) = Price.

2 Leverage the CFG and a set of grammar rules to parse the
resultant translated terms into ArkLang dialect,
average € Aggregations and wine prices € Fields, with
average, Price € aggregation expressions.

3 Compile the ArkLang sentences into VizQL commands and
issue those commands against a database, e.g. g([average,
Price]).

S INFERENCING LOGIC

Handling underspecification in natural language utterances involves
addressing their ambiguities and making thoughtful choices as to
what the user’s intent may be. By leveraging the known syntac-
tic and semantic structures in the analytical expressions defined in
ArkLang, we apply a set of inferencing rules to address missing
information. Our algorithm handles four types of inferencing: (a)
handling underspecification within each of the 5 analytical expres-
sions, i.e. intra-phrasal inferencing, (b) handling underspecification
between the analytical expressions, i.e. inter-phrasal inferencing, (c)
handling underspecification in the analytical expressions when a
user explicitly specifies a visualization type that she would like to
see the analytical response represented in, and (d) inferring reason-
able defaults for vague underspecified concepts such as ‘expensive’
and ‘popular.” We explore each of these inferencing types in the
subsequent sections.

A common issue with inferring missing detail is that the algo-
rithm could result in multiple valid matches creating a confusion set.
When this set is large, it is difficult for a user to navigate through
the matches to find her target interpretation. We apply a notion of
relevancy to narrow down the possible semantic representations for

IUI’'19, March 17-20, 2019, Marina del Ray, CA, USA

each syntactic analysis, and derive a subset of plausible interpreta-
tions from that confusion set. Relevancy is based on string similarity
scores between the input natural language utterance and the inter-
pretations returned by our system. We leverage an off-the-shelf
term frequency-inverse document frequency (TFIDF) [31] similarity
score in Elasticsearch! as the scoring is easy to compute and tends
to work well for our purpose. For utterances where the fields are
missing (e.g. an underspecified filter expression “over $200”), our
system will infer the missing field based on a popularity score from
usage data and how often the field was used in visualizations on the
datasource. Finally, we identify a set of heuristics based on princi-
ples of information visualization to further prune the visualization
responses for their analytical usefulness [8, 29]. For example, when
inferring a time concept in an utterance such as “show me orders
20157, relative time concepts (e.g. “last 2015 years”) tend to be less
salient than absolute time concepts (e.g. “in the year 2015”).

5.1 Repair and refinement

With natural language interfaces, understanding and interpreting user
intent is always a challenging problem. It is pertinent for systems
making smart defaults and inferences about user intent to have provi-
sions for repair and refinement during the interaction experience [33].
We draw inspiration from other natural language interfaces that sup-
port handling repair [11, 12, 17, 34, 38] through similar refinement
widgets. Such systems tend to be more useful when they not only
parse the linguistic structure of the utterances, but also effectively ad-
dress inevitable ambiguity in inferencing through repair utterances,
feedback and ambiguity widgets.

The intent for refinement interaction is to provide a complemen-
tary model for users using our natural language system to observe
the analytical operations the system performs after interpreting an
analytical utterance (e.g. “low sales” will be interpreted as “sales
between X and Y,” where X and Y are numerical limits). A user
can then repair or correct an interpretation if the inferencing is not
optimal. The refinement widgets also provide a means for data and
feature discoverability. E.g., after typing “maximum sales” a user
could see other aggregation functions in the set like sum, average as
well as other numerical attributes with similar data properties such
as Profit and Discount. We discuss in more detail how refinement is
supported in our system in Section Resolving vague predicates and
in Figure 6.

5.2 Intra-phrasal inferencing

Our inferencing logic relies on constraints imposed by the syntactic
and semantic structure of the various expressions. Each fully speci-
fied expression has a known set of parameters, with a known set of
constraints determining the natural language tokens, fields and val-
ues. For example, in Figure 3a, the user specifies a range of numbers
without mentioning the type of filter. Based on the grammar rules for
filter expressions, our system infers a filter ‘between’ to generate a
fully specified ‘filter expression. Given that these natural language ut-
terances need to resolve into VizQL queries [40], we apply additional
constraints to generate viable visualizations in Tableau. Specifically,
filter and limit expressions require a group or an aggregation expres-
sion to be present. A limit expression also requires an aggregated

'https://www.elastic.co/

https://www.elastic.co/

IUI’19, March 17-20, 2019, Marina del Ray, CA, USA

sum of Medal Rank by Country with Medal Rank between 1 and 3

T Mep

Medal Rank

(a) “countries with rank 1 3”

Vidya Setlur, Melanie Tory, and Alex Djalali

sum of Number of Records by Country, top 10 Countries by sum of Number of Records

ul Bor Crart

Number of Records

(b) “top 10 countries”

Figure 3: Intra-phrasal inferencing. (a) An underspecified filter expression where the filter type is an open variable. The system infers
the filter between and generates an appropriate response with a canonical output “by Country with Medal Rank between 1 and 3.”
(b) An underspecified limit expression where the aggregation expression is an open variable. The system infers ‘sum of Number of
Records’ showing the number of records in the view. A fully specified limit expression “top 10 Country by sum of Number of Records.”

is generated to limit the dimension ‘Country’.

expression to limit the attribute by. A sort expression requires the
dimension that is sorted upon, to be in a group expression. We es-
tablished a rule that infers SUM(NumberOfRecords) when a user
does not specify an aggregation expression. ‘Number of Records’ is
an automatically generated calculated field in Tableau that contains
value 1, associated with each record in the database. In Figure 3b, a
fully specified limit expression requires a numerical attribute with a
suitable aggregation function applied, which is “sum of Number of
Records” in this case.

For each of the analytical expressions, let us assume a finite set
of variables of that type. For example, for the group expression, the
variables would be g, ..., g, for n < @. We identify an expression
to be underspecified if the expression contains at least one free
variable. For example, an underspecified aggregation expression
would be of the form average, x, where x is a Field variable. While
the Aggregation, average, in this expression is defined, its Field
is not—it is the free variable x. Similarly, sales, at least,y, is an
underspecified filter expression where y is a Value variable.

We can now reify the notion of what we call intra-phrasal in-
ferencing as it relates to ArkLang: It is the process of instantiating
an open variable in an ArkLang expression with an actual instance
of that data or concept type. Let us refer to such a process as the
function Intra and defined, in part, ostensively as follows.

o If [average, x] is an underspecified aggregation expression
and x is a free variable of type Field, then Intra([average, x])
= [average,sales] is a fully specified aggregation expression.

o If [x, country] is an underspecified group expression and x is
a free variable of type Group, then Intra([x, country]) = [by,
country] is a fully specified group expression.

o If [sales, at least, x] is an underspecified filter expression
and x is a free variable of type Value, then Intra([sales, at
least, x]) = [average, sales, $100] is a fully specified filter
expression.

e If [x, 10, by, country, average, sales] is an underspecified
limit expression and x is a free variable of type Limit, then

Intra([x, 10, by, country, average, sales]) = [top, 10, by,
country, average, sales] is a full specified limit expression.

o If [by, country, x, average, sales] is an underspecified sort
expression and x is a free variable of type Sort, then Intra([by,
country, X, average, sales]) = [by, country, descending, av-
erage, sales] is a full specified sort expression.

The function Intra selects the non-logical constant of the appro-
priate type to instantiate for x based on relevancy. We then compute
the top n most relevant non-logical constants and instantiate them
for x, resulting in a set of n fully specified analytical expressions.

5.3 Inter-phrasal inferencing

Given a fully specified analytical expression of ArkLang, we infer
additional fully specified analytical expression either because (i) the
underlying query language we compile ArkLang into, i.e., VizQL,
requires such additional expressions to be co-present for purposes
of query specification or (if) such additional expressions improve
the analytical usefulness of the resultant visualization. Inter-phrasal
inferencing infers these various constraints between these analytical
expressions.

In regard to (i), the visual specification for VizQL requires either
measure fields to be aggregated or dimension fields grouping the
data into panes to generate a visualization. Therefore filter and limit
expressions require aggregated measures and/or grouped dimensions
in play to select subsets of the data for analysis. A sort expression
has a stricter constraint that requires the dimension that is being
sorted to also be used to group the data in the visualization. Consider
the natural language representation of a sort expression “sort Coun-
tries in descending order by average Sales.” In order to compile this
expression into VizQL, the underlying attribute of this expression
‘Country’ requires itself understood as being the group expression
‘by Country,” to be compiled in conjunction with the sort expression.
So, when our system encounters any sort expression, if its underlying
group expression does not appear with it conjunctively, our system
must introspect the sort expression, retrieve that group expression,

Inferencing Underspecified Natural Language Utterances in Visual Analysis

sum of Number of Records by Product Name, sort Product Name in descending order by

sum of Number of Records

Product Name =

Humber of Recorts

(a) “sort product from biggest”

IUI’'19, March 17-20, 2019, Marina del Ray, CA, USA

sum of Sales by Order Date’s week with Order Date in July 2016

Week of Order Date [2016]

(b) “sales throughout july 2016”

Figure 4: Inter-phrasal inferencing. (a) A sort expression requires the dimension that is being sorted to also be used to group the data
in the visualization. Here ‘by Product’ is inferred as a group expression and we also infer ‘sum of Number of Records’ to generate
an analytically useful bar chart. (b) We infer a group expression ‘by Order Date’s week’, which is 1 level lower than the month level
(July 2016) in the filter expression in order to generate an analytically useful time series chart.

and infer the conjunctive expression, e.g., “by Country sort Coun-
tries in descending order by average Sales.” Even though VizQL
requires either a group or an aggregation expression to generate a
visualization, our system infers both a group and aggregation expres-
sion to address (7). Figure 4a shows a group expression derived from
the sort expression’s attribute along with an aggregation expression
generating a bar chart.

With respect to (ii), when a user types “temperature throughout
july 20187, he likely expects the result to reveal the temporal aspects
of the data. ArkLang supports the notion of level of detail in data
hierarchies such as location and time. To generate a time-series line
chart, the system introspects the current level of detail of a temporal
hierarchy in the filter expression, and infers a group expression of
the temporal concept to be 1 level lower than the original temporal
concept in the filter expression (except for ‘second’, which is the
lowest level of the temporal hierarchy; in this case, the system simply
infers ‘second’). Figure 4b shows the result of this inferencing logic.

5.4 Inferencing for supporting visualization types

During visual analysis, people may explicitly express their intent
for a specific graphical representation, such as a line chart to per-
form temporal analysis. The inferencing logic for deducing sensible
attributes to satisfy valid visualizations, relies on Show Me, an inte-
grated set of rules and defaults, incorporating automatic presentation
from the row and column structure of a VizQL expression [21]. Show
Me adopts best practices from graphics design and information visu-
alization when ranking analytically useful visualizations based on
the type of attributes utilized in the analysis workflow.

Amongst the visualizations we support in our system, text tables
have the lowest rank because their primary utility is to look up spe-
cific values. The higher ranked visualizations present views that
encode data graphically. Since text tables have a low rank, their con-
dition is easily met and is always available as a default visualization.
Hence, we do not have to infer any attributes to display a text table.
We support 7 other visualizations and enumerate their corresponding
inferencing logic when a user explicitly asks for these chart types in
their input utterances:

e Bar chart: Infer a quantitative attribute, as bars are effective
for comparing numerical values, particularly when they are
aligned. E.g In “start date as a bar chart,” infer ‘sum of Num-
ber of Records’ to return a result “by Start Date’s year and
sum of Number of Records as a bar chart.”

o Gantt chart: Gantt charts are effective for showing duration
for a quantitative attribute. Infer a date attribute when only
a dimension is present; infer a dimension when only a date
attribute is present; infer both a dimension and a date time
field if both are not present. E.g. In “order date as a gantt,”
infer ‘Category’ to return “sum of Number of Records by
Order Date’s year and by Category as a gantt chart.”

e Line chart: A line chart is effective for showing trends. This

command treats the date field discretely. Infer a date attribute.

E.g. In “sum of sales by customer name as a line chart,” infer

‘Order Date’ to return a result “sum of Sales by Customer

Name by Order Date’s year as a line chart.”

Map: Infer a geographic attribute. E.g. In “sum of sales by

customer name by location,” infer ‘City’ to return a result

“sum of Sales by Customer Name by City as a map.”

e Pie chart: Pie charts are generally used to show percentage
or proportional data represented by each category. Given a
numerical attribute, infer a categorical attribute. E.g. In “sum
of sales as a pie chart” infer ‘Category’ to return a result
“sum of Sales by Category as a pie chart.” Similarly, given a
categorical attribute, infer a numerical one.

e Scatter plot: Scatter plots are effective for comparing two
values. Infer a additional measure. E.g. In “correlate sum of
sales by customer name,” infer ‘Discount’ to return a result
“sum of Sales and sum of Discount by Customer Name as a
scatterplot.”

o Treemap: Treemaps are used to display hierarchical data
using nested rectangle representation. Given a numerical at-
tribute, infer a dimension. E.g. In “sum of sales as a tree map”
infer ‘Category’ to return a result “sum of Sales by Category
as a treemap.” Similarly, given a categorical attribute, infer a
numerical one.

IUI’19, March 17-20, 2019, Marina del Ray, CA, USA

sum of Number of Records by Region as a bar chart

Nambar of Rscands

(a) “show me regions as a bar chart”

sum of Life Expectancy by Country as a map

1266

(c) “life expectancy by location”

sum of GDP per capita and sum of Life Expectancy as a scatter plot

0P per canita

uteExpactancy

(e) “what’s the correlation of gdp?”

Vidya Setlur, Melanie Tory, and Alex Djalali

sum of Population by Date’s year

(b) “population over time”

sum of Life Expectancy by Region as a pie chart

s14303

(d) “show me life expectancy in a pie chart”

sum of Number of Records by Continent as a treemap

B Troeman

Wumbar of Records

2240 115%

(f) “continent in a treemap”

Figure 5: Inferring attributes to support various visualization types expressed in the input utterance (a) A measure ‘sum of Number
of Records’ is inferred to show the number of records per region, (b) A date field is inferred to generate a time series chart, (c) A
geographic field ‘Country’ is inferred, (d) A categorical attribute is inferred to generate a pie chart, (¢) A top-ranked measure based
on usage popularity is inferred to generate a scatter plot to show correlation, (f) A measure ‘sum of Number of Records’ is inferred

to show the relative sizes of the continents.

One of the goals of our system is to provide analytically useful
visualization responses to the user’s data inquiry. We draw from best
practices and principles in information visualization to translate such
inferences into transformations on the visualization [29, 43]. For
example, the utterance “top 3 employees with highest profit margins”
generates a bar chart. In order to better help the user analyze the
employee data quantitatively for comparison and ranking, we sort
the bars in the bar chart in descending order as an implicit inference
(as seen in Figures 2c, 2d and 3b). Similarly, when a user asks the
question “house prices in seattle over the past 5 years,” displaying
geographic and temporal data in a time series line chart is often more
effective than the same in a map.

5.5 Resolving vague predicates

Vagueness is a term used in linguistics manifested by concepts such
as ‘low’, ‘high’, ‘good’, and ‘near.’ These concepts are termed as
‘vague’ because of our inability to precisely determine and gener-
alize the extensions of such concepts in certain domains and con-
texts [18, 35]. Vague concepts typically have blurred boundaries
without a clear distinction between the entities that fall within their
extension and those that do not. With metadata provided by the
Semantic Model, along with Arklang’s formalism of the various
analytical expression types, we support various vague concepts. In
addition, we extend our inferencing logic to make smart defaults
for such concepts. For example, the vague concept expensive is a
filter expression, whose syntactic and semantic structure expects
an attribute that is of a currency type as encoded in the underlying

Inferencing Underspecified Natural Language Utterances in Visual Analysis

sum of Price by Country with expensive Prices as a map

Country |with expensive Prices x [a 1 X

EMep
Price

-
510000 $62877.00

(a) “where are the expensive wines?”

Figure 6: Inferring vague predicates. The system infers a cur-
rency attribute ‘Price’ for the concept expensive and the geo-
graphic attribute ‘Country’ in response to the word ‘where’. A
numeric range is inferred from the metadata for ‘Price.” Click-
ing on ‘expensive’ enables refinement of selected values.

Semantic Model. The filter is between and the value is inferred by
the attribute’s metadata also encoded in the Semantic Model. So,
for the utterance “where are the expensive wines?”, the system in-
fers expensive to range from avg 1SD,max, where avg, SD and max
are the average, standard deviation and maximum values for the
numerical field ‘Price’ that also has metadata indicating that it is a
currency attribute. Similar to other systems such as Datatone and
Eviza [12, 34], we expose these system presumptions as widgets
where the user can override or redefine these defaults as shown in
Figure 6. We collect telemetry data on these system overrides and
interactions that provide a feedback loop to the system regarding
relevancy in the inference logic.

6 DEPLOYMENT AND ITERATION

We deployed our system for a two month period, both within and
outside our organization. Based on usage logs, at least 205 unique
users tried the system, generating over 6200 visualizations. We
observed considerable repeat use, with 66 people using the system
at least 10 times each, and 10 people using it at least 50 times. A
wide variety of sample datasources were available and people could
also upload and use their own data.

We gathered feedback throughout the deployment and iteratively
improved our inferencing logic to address concerns raised by our
users. The logic evolved considerably over this time, as real world
queries on various data sets identified limitations and gaps in our
initial logic. The inferencing logic described in this paper represents
our final set of rules following this iterative development period.

7 SUMMATIVE EVALUATION

As a summative assessment of our inferencing logic, we conducted
a survey. Respondents assessed visualization response quality for a
diverse set of underspecified input queries. To select input queries
that were representative of actual use, we drew on collected log data
from our two month deployment.

IUI’'19, March 17-20, 2019, Marina del Ray, CA, USA

7.1 Method

7.1.1 Survey Data. We first curated a set of example queries and
responses. From all logged input queries (459) on our most popular
data source (a data set about wines), we manually filtered out inter-
mediate log entries, nonsensical queries (e.g. “I love Pinot Noir”),
queries that were unanswerable with the data source, fully specified
inputs (where no inferencing is required), exact duplicate queries,
and duplicate concepts. The result was a set of 35 queries covering
all of the analytical concepts (but not equally represented) and most
of the inferencing types.

For each query, we then used our system to generate a visualiza-
tion. One complication is that our system generates several inter-
pretations of any input utterance, from which the user may choose,
rather than a single option. Our goal was to assess the quality of
the ‘best’ of these possible interpretations, under the assumption
that a user will know which one to choose. As such, for each query,
two authors manually selected the best interpretation from the avail-
able list based on consensus agreement. We then used the system
to generate a visualization for each of these ‘best’ options. Queries,
visualizations, and survey results may be found in the supplemental
material.

7.1.2 Procedure. Our survey asked respondents to assess the qual-
ity of each visualization in relation to its input query. Participants as-
sessed both the system-selected data content (e.g., attributes, filters,
aggregations) and the visualization (chart type / visual encoding),
using two 5 point Likert scales ranging from <1 - very good> to
<S5 - very poor>. Prior to answering these questions, participants
reviewed a detailed data schema to familiarize themselves with the
data fields and their meaning.

Each participant rated all 35 visualizations. Questions were pre-
sented in random order. An optional comments box was provided for
each question and participants were encouraged to add comments if
they gave a rating of poor or very poor. Participants also answered
several demographic questions.

7.1.3 Participants. Fifty-one adults from our organization (35
male, 15 female, 1 gender unspecified) completed the survey. Age
varied between 20-65+ and job roles included software engineering,
sales, research, and design. 21 of the participants had previously
tried our natural language system during the deployment and 30 had
not. Most participants regularly used data analytics tools, with 39
participants reporting daily or weekly use.

7.2 Results

Overall ratings of both data content and visualization design were
quite positive, with 83% of all ratings being Acceptable or better
(see Figure 7). Ratings of the data content and visualization were
closely correlated.

Most questions received a wide range of ratings, but some had
a much lower score distribution than others. Examining the lowest
scoring instances revealed that they were mostly dependent sort or
filter phrases that specify a sort or filter but not the desired visual-
ization (e.g., “points > 90,” “sort by points,” “in the last 5 years”).
Figure 8 illustrates the ratings difference between questions contain-
ing only dependent phrases (sort, filter, or limit) versus all others
(N/A).

IUI’19, March 17-20, 2019, Marina del Ray, CA, USA

Content EECE

Viz 393
0% 20% 40% 60% 80% 100%
% of Total Number of Records

Figure 7: Overall ratings for data content and visualization (viz)
design. Dark orange = very poor, beige = acceptable, dark blue
= very good.

Dependent Question

Phrase Only? Type

N/A Content
Viz

Limit Content . 58 |
Viz 50 |

Filter Content
Viz

Sort Content ER
Viz

0% 20% 40% 60% 80% 100%
% of Total Number of Records

Figure 8: Ratings for questions that included only a dependent
phrase (limit, filter, or sort) versus all other questions. Dark or-
ange = very poor, beige = acceptable, dark blue = very good.

Questions containing only a limit expression received higher
ratings than those with only a sort or filter, likely because attributes
in a limit expression can be re-used within inferred expressions.
For example, “5 most expensive titles” is interpreted by our system
as “most expensive Price, by Title, top 5 Titles by most expensive
Price”. In contrast, filter and sort expressions give no hint about the
desired visualization. In response to the query “sort by points”, our
system had to infer a dimension as a grouping variable, to create a
list of items that could subsequently be sorted by points. With no
knowledge about the meaning of dimensions, it chose Description
(a paragraph of text) rather than the more useful 7itle for grouping.
This prompted comments such as, “Description is the last thing
I’d expect,” reflecting an expectation that the system would have
semantic knowledge about attribute importance, or at least the key
attribute characterizing each record.

Apart from dependent phrases, questions that required inferring
only aggregation or visualization types had higher score distributions
than those that required inferring data fields. One poorly rated ques-
tion was “top 5 wines by variety,” which our system interpreted as
“sum of Number of Records by Variety and by Title, top 5 Titles by
sum of Number of Records.” Participants identified two inferencing
problems: 1) they expected ‘top’ to be interpreted as the quality
rating ‘Points’ rather than the default Number of Records, and 2)
they expected the top 5 for each variety, not the top 5 sorted by
variety. As one participant said, “The real issue is that ‘top’ for me
would be...either price or rating...however, this is difficult to infer as
it would be domain specific....”

Vidya Setlur, Melanie Tory, and Alex Djalali

8 DISCUSSION

Results of our summative evaluation are promising, with most exam-
ples receiving positive ratings. Our survey generated rapid feedback
on a variety of inferencing cases, but we note several limitations.
Participant responses to inferred visualizations might differ in a real
analysis situation where they entered their own queries, completed
a real analysis task, and could clarify ambiguities. Additionally,
the survey questions were not representative, as we intentionally
included only underspecified queries. Some of our examples may
be more underspecified than we would expect in real situations, es-
pecially the bare filter and sort phrases that were problematic for
our inferencing algorithm. Furthermore, the survey included only
35 queries on one dataset; future evaluations should consider more
diverse data sources and questions.

Our paper focused on providing reasonable defaults for inferring
underspecified analytical utterances. The survey helps us under-
stand how inferencing of underspecified analytical utterances fares,
and also suggests some promising areas for future work, where
improved inferencing logic could be helpful. We find that users’
explicit judgments for the same utterances can widely differ. Future
improvements can focus on personalizing the inferencing logic by
discerning individuals’ unique analytical goals through relevancy
judgments. Such judgments can be implicit through usage data or
explicit through repair and refinement. We could analyze this gap by
providing support to help users articulate their needs (e.g., solicit-
ing greater elaboration about a user’s intent, providing suggestions
based on the data or previous search behavior, or grouping similar
interpretations for utterances) [42].

Our system often defaults to inferring the calculated measure
‘Number Of Records’, which is a reasonable default if the measure
is not known, but was not wildly popular in the survey. We could
improve the choice of which measure to infer based on personaliza-
tion or additional semantics from the data itself [22]. For example,
when a user asks about her patients in her healthcare organization,
the number of visits or check-ins might be a more semantically
appropriate measure. By leveraging context and semantics derived
from entity relationships in the data, we may be able to infer more
appropriate attributes. Measure popularity may also be useful here.

Interestingness of data patterns is another promising area of re-
search of natural language systems supporting visual analysis. Data
interestingness emphasizes a notion of diversity, novelty, surprising-
ness, such as outliers and probability distributions deviating from
the uniform distribution [13]. While several metrics from statistics
and information retrieval have been proposed to measure interest-
ingness [41], it would be interesting to explore such metrics when
inferring attributes in an utterance beyond just the data types.

9 CONCLUSION

Natural language interfaces are becoming a useful modality for
exploring data and garnering insights. However, terse and under-
specified input, the bane of traditional web search systems, is a
challenge. In this paper, we introduce a set of inferencing techniques
to help generate useful visualization responses to underspecified
utterances. Based on constraints of the underlying analytics platform
and imbibing best practices from information visualization literature,
we support four types of inferencing - handling underspecification

Inferencing Underspecified Natural Language Utterances in Visual Analysis

within the analytical expressions, handling underspecification be-
tween the analytical expressions, inferring attributes given an explicit
intent for a visualization type, and inferring reasonable defaults for
vague underspecified concepts. Our inferencing heuristics were iter-
atively refined over a two month field trial based on feedback from
users. With the exception of bare filter and sort expressions that do
not define the intended visualization content, a summative evaluation
survey revealed an overall positive response to our inferencing ap-
proach. In summary, our findings pave the way for a promising area
of interdisciplinary research, drawing inspiration from web search,
data mining, visual analytics, and personalization.

REFERENCES

[1]

[2

3

[4]

[5

[6

[7

[8

[9]

[10]

(1]

[12]

[13]

[14]

[15]

2002. Placing Search in Context: The Concept Revisited. ACM Trans. Inf. Syst. 20,
1 (Jan. 2002), 116-131. DOI:http://dx.doi.org/10.1145/503104.
503110

Adnan Abid, Naveed Hussain, Kamran Abid, Farooq Ahmad, Muhammad Shoaib
Farooq, Uzma Farooq, Sher Afzal Khan, Yaser Daanial Khan, Muhammad Azhar
Naeem, and Nabeel Sabir. 2016. A survey on search results diversification tech-
niques. Neural Computing and Applications 27, 5 (2016), 1207-1229. DOI:
http://dx.doi.org/10.1007/s00521-015-1945-5

Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.
Diversifying Search Results. In Proc. 2nd ACM Intl. Conf. Web Search and Data
Mining (WSDM °09). ACM, New York, NY, USA, 5-14. DOI:http://dx.
doi.org/10.1145/1498759.1498766

Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. 1995. Nat-
ural language interfaces to databases—an introduction. Natural language
engineering 1, 1 (1995), 29-81. DOI:http://dx.doi.org/10.1017/
S135132490000005X

Johan Bos. 2004. Computational Semantics in Discourse: Underspecification,
Resolution, and Inference. J. Logic, Language and Information 13, 2 (Mar 2004),
139-157. DOI:http://dx.doi.org/10.1023/B:JLLI.0000024731.
26883.86

Jay Budzik and Kristian J. Hammond. 2000. User Interactions with Everyday
Applications As Context for Just-in-time Information Access. In Proc. 5th Intl
Conf. Intelligent User Interfaces (IUI '00). ACM, New York, NY, USA, 44-51.
DOI:http://dx.doi.org/10.1145/325737.325776

Gabriele Capannini, Franco Maria Nardini, Raffaele Perego, and Fabrizio Silvestri.
2011. Efficient Diversification of Web Search Results. Proc. VLDB Endow. 4,7
(April 2011), 451-459. DOI:http://dx.doi.org/10.14778/1988776.
1988781

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. 1999. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA. 579-581 pages. http://dl.acm.org/
citation.cfm?id=300679.300826

Noam Chomsky. 1957. Syntactic Structures. Mouton and Co., The Hague.
Kenneth Church and Ramesh Patil. 1982. Coping with Syntactic Ambiguity or
How to Put the Block in the Box on the Table. Comput. Linguist. 8, 3-4 (July 1982),
139-149. http://dl.acm.org/citation.cfm?id=972942.972946
Kedar Dhamdhere, Kevin S. McCurley, Ralfi Nahmias, Mukund Sundararajan,
and Qiqi Yan. 2017. Analyza: Exploring Data with Conversation. In Proc. 22nd
Intl Conf. on Intelligent User Interfaces (IUI '17). ACM, New York, NY, USA,
493-504. DOI:http://dx.doi.org/10.1145/3025171.3025227
Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Karahalios.
2015. DataTone: Managing Ambiguity in Natural Language Interfaces for Data
Visualization. In Proc. ACM Symp. User Interface Software Technology (UIST
2015). ACM, New York, NY, USA, 489-500. DOI:http://dx.doi.org/
10.1145/2807442.2807478

Ligiang Geng and Howard J. Hamilton. 2006. Interestingness Measures for Data
Mining: A Survey. ACM Comput. Surv. 38, 3, Article 9 (Sept. 2006). DOI:
http://dx.doi.org/10.1145/1132960.1132963

Lars Grammel, Melanie Tory, and Margaret-Anne Storey. 2010. How informa-
tion visualization novices construct visualizations. IEEE Trans. visualization &
computer graphics 16, 6 (2010), 943-952. DOI:http://dx.doi.org/10.
1109/TVCG.2010.164

Barbara J. Grosz, Douglas E. Appelt, Paul A. Martin, and Fernando C. N. Pereira.
1987. TEAM: An Experiment in the Design of Transportable Natural-language
Interfaces. Artif. Intell. 32, 2 (May 1987), 173-243. DOI:http://dx.doi.
org/10.1016/0004-3702(87)90011-7

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]
[36]

[37]

IUI’'19, March 17-20, 2019, Marina del Ray, CA, USA

Sumit Gulwani and Mark Marron. 2014. NLyze: Interactive Programming by
Natural Language for Spreadsheet Data Analysis and Manipulation. In Pro-
ceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’14). ACM, New York, NY, USA, 803-814. DOI:
http://dx.doi.org/10.1145/2588555.2612177

E. Hoque, V. Setlur, M. Tory, and I. Dykeman. 2018. Applying Pragmatics
Principles for Interaction with Visual Analytics. IEEE Trans. Visualization &
Computer Graphics 24, 1 (Jan. 2018), 309-318. DOI:http://dx.doi.org/
10.1109/TVCG.2017.2744684

Dominic G. Hyde. 2010. Vagueness, Logic and Ontology. Bulletin of Symbolic
Logic 16, 4 (2010), 531-533.

Tadao Kasami. 1966. An efficient recognition and syntax-analysis algorithm
for context-free languages. Coordinated Science Laboratory Report no. R-257
(1966).

Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: An interactive natural language
interface for querying relational databases. Proceedings of the ACM SIGMOD
International Conference on Management of Data (06 2014). DOI:http://dx.
doi.org/10.1145/2588555.2594519

J. Mackinlay, P. Hanrahan, and C. Stolte. 2007. Show Me: Automatic Presenta-
tion for Visual Analysis. IEEE Trans. Visualization & Computer Graphics 13,
6 (Nov 2007), 1137-1144. DOI:http://dx.doi.org/10.1109/TVCG.
2007.70594

Stuart Madnick and Hongwei Zhu. 2006. Improving Data Quality Through
Effective Use of Data Semantics. Data & Knowledge Engineering 59, 2 (Nov.
2006), 460-475. DOI:http://dx.doi.org/10.1016/j.datak.2005.
10.001

James Mayfield, Tim Finin, and others. 2003. Information retrieval on the Semantic
Web: Integrating inference and retrieval. In Proc. SIGIR Workshop on the Semantic
Web.

Lilyana Mihalkova and Raymond Mooney. 2009. Learning to Disambiguate
Search Queries from Short Sessions. In Proc. European Conf. Machine Learn-
ing and Knowledge Discovery in Databases: Part 11 (ECML PKDD ’09).
Springer-Verlag, Berlin, Heidelberg, 111-127. DOI:http://dx.doi.org/
10.1007/978-3-642-04174-7_8

John F. Pane and Brad A. Myers. 2001. Studying the language and structure in non-
programmers’ solutions to programming problems. Intl J.Human-Computer Stud-
ies 54, 2 (2001), 237-264. DOI:http://dx.doi.org/10.1006/ijhc.
2000.0410

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a Theory of
Natural Language Interfaces to Databases. In Proceedings of the Sth International
Conference on Intelligent User Interfaces (IUI "03). ACM, New York, NY, USA,
149-157. DOI:http://dx.doi.org/10.1145/604045.604070

Feng Qiu and Junghoo Cho. 2006. Automatic Identification of User Inter-
est for Personalized Search. In Proc. 15th Intl Conf. World Wide Web (WWW
’06). ACM, New York, NY, USA, 727-736. DOI:http://dx.doi.org/10.
1145/1135777.1135883

Daniel E. Rose and Danny Levinson. 2004. Understanding User Goals in Web
Search. In Proc. 13th Intl Conf. World Wide Web (WWW '04). ACM, New York, NY,
USA, 13-19. pDoI:http://dx.doi.org/10.1145/988672.988675

H. Rosling, A.R. Rénnlund, and O. Rosling. 2018. Factfulness: Ten Reasons We're
Wrong About the World—and Why Things Are Better Than You Think. Flatiron
Books. https://books.google.com/books?id=j-4yDwAAQBAJ
Hassan Sajjad, Patrick Pantel, and Michael Gamon. 2012. Underspecified Query
Refinement via Natural Language Question Generation. In COLING 2012, 24th
Intl Conf. Computational Linguistics. Mumbai, India, 2341-2356. http://
aclweb.org/anthology/C/C12/C12-1143.pdf

Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA.

Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting Query
Reformulations for Web Search Result Diversification. In Proc. 19th Intl Conf.
World Wide Web (WWW ’10). ACM, New York, NY, USA, 881-890. DOI:http:
//dx.doi.org/10.1145/1772690.1772780

Emanuel A. Schegloff, Gail Jefferson, and Harvey Sacks. 1977. The Preference
for Self-Correction in the Organization of Repair in Conversation. Language 53,
2(1977), 361-382. http://www. jstor.org/stable/413107

Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and An-
gel X. Chang. 2016. Eviza: A Natural Language Interface for Visual Analysis.
In Proc. Symp. User Interface Software and Technology (UIST 2016). ACM,
New York, NY, USA, 365-377. DOI:http://dx.doi.org/10.1145/
2984511.2984588

Stewart Shapiro. 2006. Vagueness in Context. Oxford University Press.

Ben Shneiderman. 1997. Direct Manipulation for Comprehensible, Predictable
and Controllable User Interfaces. In Proc.2nd Intl Conf. Intelligent User Interfaces
(1UI *97). ACM, New York, NY, USA, 33-39. DOI:http://dx.doi.org/
10.1145/238218.238281

David Sontag, Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Susan
Dumais, and Bodo Billerbeck. 2012. Probabilistic Models for Personalizing

http://dx.doi.org/10.1145/503104.503110
http://dx.doi.org/10.1145/503104.503110
http://dx.doi.org/10.1007/s00521-015-1945-5
http://dx.doi.org/10.1145/1498759.1498766
http://dx.doi.org/10.1145/1498759.1498766
http://dx.doi.org/10.1017/S135132490000005X
http://dx.doi.org/10.1017/S135132490000005X
http://dx.doi.org/10.1023/B:JLLI.0000024731.26883.86
http://dx.doi.org/10.1023/B:JLLI.0000024731.26883.86
http://dx.doi.org/10.1145/325737.325776
http://dx.doi.org/10.14778/1988776.1988781
http://dx.doi.org/10.14778/1988776.1988781
http://dl.acm.org/citation.cfm?id=300679.300826
http://dl.acm.org/citation.cfm?id=300679.300826
http://dl.acm.org/citation.cfm?id=972942.972946
http://dx.doi.org/10.1145/3025171.3025227
http://dx.doi.org/10.1145/2807442.2807478
http://dx.doi.org/10.1145/2807442.2807478
http://dx.doi.org/10.1145/1132960.1132963
http://dx.doi.org/10.1109/TVCG.2010.164
http://dx.doi.org/10.1109/TVCG.2010.164
http://dx.doi.org/10.1016/0004-3702(87)90011-7
http://dx.doi.org/10.1016/0004-3702(87)90011-7
http://dx.doi.org/10.1145/2588555.2612177
http://dx.doi.org/10.1109/TVCG.2017.2744684
http://dx.doi.org/10.1109/TVCG.2017.2744684
http://dx.doi.org/10.1145/2588555.2594519
http://dx.doi.org/10.1145/2588555.2594519
http://dx.doi.org/10.1109/TVCG.2007.70594
http://dx.doi.org/10.1109/TVCG.2007.70594
http://dx.doi.org/10.1016/j.datak.2005.10.001
http://dx.doi.org/10.1016/j.datak.2005.10.001
http://dx.doi.org/10.1007/978-3-642-04174-7_8
http://dx.doi.org/10.1007/978-3-642-04174-7_8
http://dx.doi.org/10.1006/ijhc.2000.0410
http://dx.doi.org/10.1006/ijhc.2000.0410
http://dx.doi.org/10.1145/604045.604070
http://dx.doi.org/10.1145/1135777.1135883
http://dx.doi.org/10.1145/1135777.1135883
http://dx.doi.org/10.1145/988672.988675
https://books.google.com/books?id=j-4yDwAAQBAJ
http://aclweb.org/anthology/C/C12/C12-1143.pdf
http://aclweb.org/anthology/C/C12/C12-1143.pdf
http://dx.doi.org/10.1145/1772690.1772780
http://dx.doi.org/10.1145/1772690.1772780
http://www.jstor.org/stable/413107
http://dx.doi.org/10.1145/2984511.2984588
http://dx.doi.org/10.1145/2984511.2984588
http://dx.doi.org/10.1145/238218.238281
http://dx.doi.org/10.1145/238218.238281

Ul

[38]

(391

[40]

19, March 17-20, 2019, Marina del Ray, CA, USA

Web Search. In Proc. 5Sth ACM Intl Conf. Web Search and Data Mining (WSDM

’12). ACM, New York, NY, USA, 433—442. poI:http://dx.doi.org/10.

1145/2124295.2124348
Arjun Srinivasan and John Stasko. 2018. Orko: Facilitating Multimodal Interaction
for Visual Exploration and Analysis of Networks. IEEE Trans. Visualization &

Computer Graphics 24, 1 (2018), 511-521. DOI:http://dx.doi.org/10.

1109/TVCG.2017.2745219

Sofia Stamou and Alexandros Ntoulas. 2009. Search Personalization Through
Query and Page Topical Analysis. User Modeling and User-Adapted Inter-
action 19, 1-2 (Feb. 2009), 5-33. DOI:http://dx.doi.org/10.1007/
s11257-008-9056-y

Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Relational Databases. IEEE
Trans. Visualization & Computer Graphics 8, 1 (Jan. 2002), 52-65. DOI:http:

[41]

[42]

[43

[44]

Vidya Setlur, Melanie Tory, and Alex Djalali

//dx.doi.org/10.1109/2945.981851

Pang-Ning Tan and Vipin Kumar. 2000. Interestingness measures for association
patterns: A perspective. In Proc. Workshop on Postprocessing in Machine Learning
and Data Mining.

Jaime Teevan, Susan T. Dumais, and Eric Horvitz. 2010. Potential for Personaliza-
tion. ACM Trans. Comput.-Hum. Interact. 17, 1, Article 4 (April 2010), 31 pages.
DOI:http://dx.doi.org/10.1145/1721831.1721835

Edward R. Tufte. 1986. The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, USA.

Michael J. Welch, Junghoo Cho, and Christopher Olston. 2011. Search Result
Diversity for Informational Queries. In Proc. 20th Intl Conf. World Wide Web
(WWW ’11). ACM, New York, NY, USA, 237-246. DOI:http://dx.doi.
org/10.1145/1963405.1963441

http://dx.doi.org/10.1145/2124295.2124348
http://dx.doi.org/10.1145/2124295.2124348
http://dx.doi.org/10.1109/TVCG.2017.2745219
http://dx.doi.org/10.1109/TVCG.2017.2745219
http://dx.doi.org/10.1007/s11257-008-9056-y
http://dx.doi.org/10.1007/s11257-008-9056-y
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1145/1721831.1721835
http://dx.doi.org/10.1145/1963405.1963441
http://dx.doi.org/10.1145/1963405.1963441

	Abstract
	1 Introduction
	2 Related Work
	3 Contributions
	4 System Overview
	4.1 Formal Representation

	5 Inferencing Logic
	5.1 Repair and refinement
	5.2 Intra-phrasal inferencing
	5.3 Inter-phrasal inferencing
	5.4 Inferencing for supporting visualization types
	5.5 Resolving vague predicates

	6 Deployment and Iteration
	7 Summative Evaluation
	7.1 Method
	7.2 Results

	8 Discussion
	9 Conclusion
	References

