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ARTICLE

An efficient technique for creating a continuum of equal-area map projections
Daniel “daan” Strebe

Mapthematics LLC, Seattle, WA, USA

ABSTRACT
Equivalence (the equal-area property of a map projection) is important to some categories of
maps. However, unlike for conformal projections, completely general techniques have not been
developed for creating new, computationally reasonable equal-area projections. The literature
describes many specific equal-area projections and a few equal-area projections that are more or
less configurable, but flexibility is still sparse. This work develops a tractable technique for
generating a continuum of equal-area projections between two chosen equal-area projections.
The technique gives map projection designers unlimited choice in tailoring the projection to the
need. The technique is particularly suited to maps that dynamically adapt optimally to changing
scale and region of interest, such as required for online maps.
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1. Introduction

The increasing use of interactive, adaptable maps, par-
ticularly in software hosted on the World Wide Web,
often begs for seamless transitions between map pro-
jections. Compare, for example, the adaptive projection
system devised by Jenny (2012) or the National
Geographic animation created by Strebe, Gamache,
Vessels, and Tóth (2012). Strebe (2016) developed an
equal-area, continuous hybrid between Bonne and
Albers projections for dynamic or animated maps as
a solution to a particular case.

If the adaptable map does not need to preserve
areas, then hybridization can be simple, such as a linear
combination of the initial and the terminal projections.
However, even that simplicity can be deceptive. If the
two projections diverge sufficiently in planar topology,
then linear combinations could result in unacceptable
behavior such as the intermediate projection overlap-
ping itself. An overlap means that two or more points
from the sphere map to the same point on the plane,
and this happens across a region. See, for example, the
“wild vines” Snyder (1985, p. 86) describes for his GS50
projection outside its useful domain.

When the initial and terminal projections (hereafter,
the limiting projections) are equal-area, and area must
be preserved throughout intermediate projections,
solutions are much more difficult. This is because
linear combinations of equal-area projections do not,

themselves, preserve area in the general case, as shown
below. Therefore, efforts to create such transitional
projections tended to be bespoke because general tech-
niques for hybridizing equal-area projections had not
been developed. Some efforts likely never came to
fruition because the hybridization proved intractable.

To hybridize two equal-area projections, we would
like to do something like

C ¼ kBþ ð1� kÞA
where k is a parametric constant such that 0 � k � 1,
A is the desired initial projection, B is the desired
terminal projection, and C is the resulting hybrid.
This would yield a smooth transition from A to B. A
continuum of maps between two projections via a
parameter in the range [0, 1] is called a homotopy in
algebraic topology and related fields.

However, usually the hybrid projection C would not
preserve areas. This is demonstrated next. For a sphe-
rical projection, the property of equivalence is detected
by the following analog to the Cauchy–Riemann equa-
tions (Snyder, 1987, p. 28):

@y
@φ

@x
@λ

� @y
@λ

@x
@φ

¼ s cosφ

where s is constant throughout the map, φ is the
latitude, and λ is the longitude. Equivalence can be
defined strictly or loosely; Snyder’s definition is strict
in that s ¼ R2 only, where R is the radius of the globe.
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By this definition, any region on the globe has the same
area on the map. By a looser definition, s may be any
finite, nonzero value. The rationale in the looser case is
that all regions on the map remain proportioned cor-
rectly to each other. The looser definition permits an
affine transformation, as any constant, nondegenerate,
2� 2 real-valued matrix M, to be applied to the
Cartesian coordinates of an equal-area mapped func-
tion, resulting in a new equal-area projection. In this
case s ¼ R2= det Mð Þ. When s is not relevant, we assume
s ¼ 1 for a unit sphere and identity linear transforma-
tion, giving:

@y
@φ

@x
@λ

� @y
@λ

@x
@φ

¼ cosφ: (1:1)

For C ! x, y as a linear combination of the two pro-
jections A ! xA; yA and B ! xB; yB, preserving areas
would require that

@ kyB þ ð1� kÞyA½ �
@φ

@ kxB þ ð1� kÞxA½ �
@λ

� @ kyB þ ð1� kÞyA½ �
@λ

@ kxB þ ð1� kÞxA½ �
@φ

¼ cosφ: (1:2)

However, simultaneously,

@yA
@φ

@xA
@λ

� @yA
@λ

@xA
@φ

¼ cosφ

@yB
@φ

@xB
@λ

� @yB
@λ

@xB
@φ

¼ cosφ

which, substituting into Equation (1.2), implies

@yB
@φ

@xA
@λ

þ @yA
@φ

@xB
@λ

� @yB
@λ

@xA
@φ

� @yA
@λ

@xB
@φ

¼ 2 cosφ: (1:3)

This equality places stringent constraints beyond just
equivalence upon choices for A and B. Therefore, linear
combinations of arbitrary choices for A and B will not
themselves be equivalent.

New equal-area projections can be generated via a
variety of simple transformations applied to known
equal-area projections. As mentioned above, any non-
degenerate, affine transformation to an equal-area pro-
jection yields an equal-area projection. Or, all mapped
points sharing the same y value can deform into the arc
of a circle, with neighboring horizontals becoming
concentric arcs. Applied to the sinusoidal projection,
this technique results in the Bonne projection. Other
methods appear in the literature, such as Umbeziffern
(renumbering), first used by Hammer to develop the
Hammer from the Lambert azimuthal equal-area, and
then named and elaborated on by Wagner (1949) for
several of his projections. And so on.

More sophisticated new equal-area projections can be
created at will because any equal-area projection can
become an area-preserving transformation applied to
any other equal-area projection, given suitable scaling.
This was the basis for the Strebe 1995 projection
[Šavrič, Jenny, White, and Strebe (2015)], for example,
where Strebe scales the Eckert IV projection to fit within
the confines of a Mollweide projection; back-projects the
results to the sphere; and then forward projects to the
plane via the Hammer. However, results depend on the
projections available rather than on specific needs of the
projection designer, and also do not obviously contribute
to hybridization.

Some techniques for generating new equal-area pro-
jections were developed to approximate desirable distor-
tion characteristics. Snyder (1988) gives a transformation
that can be applied to Lambert azimuthal equal-area and
repeatedly thereafter in order to coax the angular isocols
toward desired paths. Canters (2002) gives polynomial
transformations for the same purpose that can be applied
to any equal-area map and optimized via, for example,
simplex minimization against specified constraints.
Neither technique appears obviously adaptable to gener-
ating homotopies. Given the amount of calculation
involved, neither technique would be well suited to
dynamic maps in any case.

2. Background

In describing local distortion on a map projection, the
usual metric is Tissot’s indicatrix, presented in 1859 by
Tissot (1881). The indicatrix projects an infinitesimal
circle from the manifold to the plane. On smooth por-
tions of the map, the circle deforms into an ellipse with
semimajor axis a and semiminor axis b. If a� b is
constant throughout the indicatrices of the map, then
the map is equal-area. If a ¼ b throughout themap, then
the map is conformal.

As noted by Laskowski (1989), Tissot’s indicatrix of a
projected point can be described via the singular value
decomposition of the point’s column-scaled Jacobian
matrix. Hereafter the Jacobian will be denoted J. In the
case of a sphere-to-plane projection, the affine transforma-
tion representing the complete Tissot ellipse T is given by

T ¼ J � secφ 0
0 1

� �
: (2:1)

In particular, the areal inflation or deflation (or
generically flation, as per Battersby, Strebe, and Finn
(2016)) can be calculated as

s ¼ detT: (2:2)
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The term isocol appears in Section 1. The term is
specific to cartographic maps, and denotes a level curve
of distortion. In the case of a conformal map, it is the
level curve of constant scale factor. In the case of an
equal-area map, it is the level curve of constant angular
deformation, which also implies Tissot ellipses of con-
stant dimensions. For maps that are neither conformal
nor equal-area, the term is not defined, although iso-
cols of angular deformation and isocols of flation both
apply and generally do not coincide.

The term standard parallel appears in the text as an
attribute of a conic projection. This is the cartographic
term for the geographic parallel along which the conic
projection is undistorted. Conceptually, it is the circle
of tangency of the cone on the sphere. When there are
two standard parallels, they are, conceptually, the
secant circles – that is, where the cone cuts through
the sphere. “Conceptually,” because generally the pro-
jections involved are not literal perspectives.

3. Development

3.1. Observations

(1) By the loose definition of equal-area transforma-
tion, an equal-area projection A from manifold
(such as sphere) to plane, then scaled by s, and
thence deprojecting back to the manifold via the
inverse A0 – that is, A0

s ¼ A0 s � Að Þ – results in
the area-preserving transformation A0

s from the
manifold to itself. This must be true because
each step preserves relative areas. In general,
the result covers only part of the manifold, and
indeed s ought to be chosen such that s � 1.
Hereafter we refer to this parametric s as k
such that ½0 � k � 1�.

(2) Projecting A0
k to the plane via some other area-

preserving transformation B yields an equal-area
projection Ck.

(3) Scaling Ck by 1=k yields C having the same
nominal scale as A: that is, any region in A
will have the same area measure in C, insofar
as B’s area change is unity.

(4) As k ! 0, the fraction of projection B’s range
that is devoted to the transformation shrinks
toward a single point, and so C’s distortion
characteristics approach being described by a
single Tissot indicatrix.

(5) If A0
k is contrived such that an “anchor point” P0

on the manifold remains undistorted by
A0 k � Að Þ=k, and contrived such that the Tissot
indicatrix at P ¼ B P0ð Þ=k shows no distortion,

then C will be merely k � A as k ! 0. This is true
despite having been projected by B because B
has no distortion locally at B and therefore does
not contribute to projection.

(6) If k is chosen to be 1, then the deprojection
procedure giving A0

k results in full coverage of
the original manifold, undistorted, and therefore
C will be merely B.

(7) In a “reasonable” projection B, distortion
increases away from P in most directions if P
has no distortion.

These observations lay the groundwork for the techni-
que. While the observations above, and the technique
to follow, are applicable to any sufficiently smooth
manifold, the remainder of this monograph discusses
the sphere specifically, but without loss of generality.

3.2. Synthesis

Let k represent the weight of B desired in the blended
projection, such that 1� kð Þ shall be the weight of A.
By Observations (3) and (5), when k ¼ 0, we have
k � A=k ¼ A. By Observation (6), when k ¼ 1, we
have B.

For k in 0; 1ð Þ, when k is small, the contribution of B
in the description of C is small. This is because the
distortion of B is low in the neighborhood of P and
therefore, by Observations (5) and (7), its distinguish-
ing characteristics as a projection are small in that
region. Meanwhile, the heavy reduction in A’s scale
due to small k places all of A into that region of low
distortion in B. That leaves A’s distortion characteris-
tics to dominate.

Conversely, as k increases, the portion of B’s range
that A fills increases, and this increases the influence of
B’s unique characteristics. Simultaneously, A’s charac-
teristics diminish because the sphere-to-sphere map-
ping from Observation (2) places points closer and
closer to their original location as k increases.

We thereby have a continuum of equal-area map
projections. These features fulfill the requirements for
an area-preserving homotopy. The technique is illu-
strated in Figure 1.

Expressing this synthesis using notation introduced
heretofore, and presuming no distortion at P ¼ B P0ð Þ,

C ¼ BðA0 k � A½ �Þ=k: (3:1)

In practice, our choice of anchor point P might vary as
k varies, so that when k is 0, P has no distortion, but as
k increases, P moves toward some center common to
both projections, such as a point of bilateral symmetry.
This might be our choice if that common center is
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Figure 1. How the homotopy works, k � 1=2.
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distorted in B. Or, perhaps we keep P constant but
apply an affine transformation MB to B for large k in
order to eliminate the distortion at the common center
P, with MB approaching identity as k ! 0. We express
this more general latter case as

C ¼ MB � BðA0 k � A½ �Þ=k (3:2)

where, for example,

NB ¼ k � I þ 1� kð Þ � T�1
B Pð Þ

MB ¼ NBffiffiffiffiffiffiffiffiffiffiffiffiffi
detNB

p (3:3)

with I as the identity matrix and TB as given in
Equation 2.1 for projection B. This yields a constant
determinant of 1 across the parameterization, and
therefore preserves area. Obviously other ways of con-
structing MB are possible.

Other ways of selecting the anchor point and parame-
terizing the projections involvedmight present themselves,
depending upon the limiting projections. The example in
Appendix Section A.2 demonstrates such a case.

Note a qualification in Observation (5): P0 must
remain undistorted in A0

k. This is crucial to the techni-
que because the pre-image of k � A has to retain the
distortion characteristics of k � A as k ! 0. If it does
not, then B A0

kð Þ=s will not result in A as k ! 0.
Therefore, the scaling by k on the plane must be
arranged such that P ¼ A P0ð Þ anchors the projection,
with the rest shrunk toward it radially. What is impor-
tant is that P0 round-trips to its original position: That
is, P0 ¼ A0 k � A P0½ �ð Þ.

It may be that A P0ð Þ does not remain undistorted for
the desired P0. For example, if A and B are equatorial
pseudocylindric projections, and A is distorted at the
center as a vertical elongation, and the desired homo-
topy would consist of pseudocylindric projections
throughout, then more needs to be done. A0 yields an
undistorted P0 because it undoes the distortion A
enacted. When then projected by B, if B P0ð Þ remains
undistorted, then C will be squashed compared to A as
k ! 0. The stretch could be reintroduced after B. The
stretch after B would be linear against k, such that k ¼
0 gives the full compression/stretch, and k ¼ 1 gives
none. In the general case this can be expressed as

C ¼ MA �MB � BðA0 k � A½ �Þ=k (3:4)

with MB as from Equation (3.3) and MA being the
analogous correction for A:

NA ¼ k � I þ 1� kð Þ � TA Pð Þ
MA ¼ NAffiffiffiffiffiffiffiffiffiffiffiffiffi

detNA
p ; (3:5)

noting that it is not the inverse T�1
A ðPÞ involved, but

TAðPÞ itself because the goal is to apply the original
distortion, not to undo it.

As seen in the examples in Appendix Section A.2,MA

andMB are not inevitable even when P or P0 is distorted,
and, in fact, the inverse transformation from k � A back
to the sphere need not even use A0: Any equal-area
projection that limits to A when k ¼ 0 could potentially
be used. MA and MB are just general rote devices for
reliably achieving a homotopy.

4 Characteristics

4.1. Computational cost

The computational cost of this technique is the cost of
A, of A0, of B, and a little overhead for scaling and any
other adjustments the projection designer might want.
Obviously, this is far cheaper than a direct interpreta-
tion of the partial derivatives of the projections in play,
which would imply computing a double integral for
every point. Despite the cheap cost, the result is still
superior to the naïve double integral because this tech-
nique will not result in overlaps.

4.2. Asymmetry

This technique is sensitive to which of the two chosen
projections gets assigned to be A and which to B. That
is, the homotopy from A to B differs from the homo-
topy from B to A. Therefore, the homotopy is direc-
tionally asymmetric.

Another asymmetry arises due to the use of linear para-
meter k as a scale factor in both dimensions when con-
structing A0

s. A linear progression in k generally yields a

weight that favorsA. Using
ffiffiffi
k

p
in place of k throughout the

formulations yields a subjectively more linear homotopy.

4.3. Distortion

Distortion characteristics of homotopies between arbi-
trary pairs of limiting projections are difficult to speak
of in generalities. They tend to be highly contingent
upon the homotopy. However, if the two limiting pro-
jections are chosen such that both have low distortion
in the region in which they anchor to each other, we
can expect the homotopy to have low distortion
throughout the same region. In those cases, regions of
unexpected or wildly varying distortion tend to occur
only toward the boundary of the hybrid projection, if at
all. When boundaries are topologically similar (such as
for two pseudocylindric projections), the resulting pat-
terns of distortion can be intuited readily.
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4.4. Outer boundary

Projections whose planar topologies are the same retain
the common topology under the homotopy. Hence, the
continuum between two equatorial pseudocylindric
projections with pole-lines, for example, continues to
have the outer meridian, duplicated left and right, as its
outer boundary, along with a line for the pole. If they
have pointed poles, then so will the continuum. If they
have flat poles, then so will the continuum. If the initial
projection is pointed and the other not, then the con-
tinuum will be pointed except at the flat extreme, but
the angle of incidence may be imperceptibly slight
approaching the flat pole extreme. If the initial projec-
tion has a flat pole but the terminal is pointed, then the
continuum will be flat throughout, with width shrink-
ing to a point at the terminal extreme.

When the limiting projections’ topologies differ,
little can be said generally other than that the solution
becomes specific to the projections. The description of
the boundary is a tractable calculation, but not neces-
sarily simple or convenient. The Lambert azimuthal-to-
Albers continuum of Appendix Section A.2 is an exam-
ple of a nontrivial topological evolution.

4.5. Applicability to conformal and other maps

In cartography, one might need a homotopy between two
conformal projections. Due to the fact that any analytic
function acting on a conformal map results in another
conformal map, a wealth of functions can be drawn upon
and composed in order to do this. However, when acting
purely on the plane, nothing guarantees a priori that a
given mapping will behave well, with the potential for the
map failing bijection criteria being an acute concern.While
it is common for cartographic maps not to be invertible at
singularities or along some boundaries, overlapping of
regions is not acceptable for ranges that must be preserved
in the mapping. Naïve blending techniques, such as linear
combinations of the two projected spaces, hazard such
overlapping.

Fortunately, nothing about this homotopy is specific
to equal-area projections. As a general topological pro-
cedure, it can be used for any sufficiently smooth
mapping from any sufficiently smooth manifold. It
can be used equally successfully for conformal maps,
and indeed, it preserves conformality in the intermedi-
ate maps. The only caveat is that the affine transforma-
tions MA and MB must not contain shear components,
but instead only scale isotropically and/or rotate. Since
the shear components in MA and MB as given in

Section 3.2 are present only to correct for non-confor-
mal behavior in equal-area maps, they could have no
purpose in a conformal mapping anyway.

Likewise, this homotopy can be developed between
aphylactic (neither conformal nor equal-area) projec-
tions, with little expectation of preserving identifiable
properties other than topological integrity. Or, for
example, it can be used to synthesize a progression
between some conformal map and some equal-area
map. Such a progression has didactic value and, in
dynamic maps, perhaps even practical value when the
thematic focus of the map changes or when zooming
out from large scale to medium and small scales.

5. Conclusion

By combining several observations about equal-area
maps in a novel way, this research produced a tract-
able technique for hybridizing any two equal-area
projections. Using such transitions, a map designer
might find combinations that yield distortion char-
acteristics more favorable to the region being
mapped than are otherwise available. Because of the
generality of the technique, and the fact that its
parameterization operates on the topology of the
sphere (or ellipsoid or other manifold), the technique
can hybridize even projections of otherwise incom-
patible planar topologies, such as an azimuthal and a
conic projection. The problem of tailored projections
has been acute for equal-area needs, since no simple,
general system existed. This new technique fills the
void.

The same ability to parameterize for new projections
between known projections makes the technique well
suited for dynamic mapping and animations. For the
first time, equal-area projections can dynamically adapt
optimally for the entire region brought into view when
panning and zooming.

The technique is computationally cheap (that is, on
the order of the limiting projections involved); com-
pletely general; and not limited to equal-area maps.
Because the technique is built upon the topology of
the surface being projected, rather than acting purely in
Cartesian space, overlapping can be avoided with mini-
mal precautions, unlike a simple linear combination of
the limiting projections. Therefore, the technique
applies equally well to conformal projections, projec-
tions that are neither conformal nor equal-area, and
even hybridizing conformal projections with equal-area
projections.
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Appendix. Examples

A.1. Sinusoidal and cylindrical equal-area

The cylindrical equal-area and the sinusoidal projec-
tions are two of the simplest equal-area projections
from sphere to plane. The cylindrical equal-area pro-
jection is defined as

x ¼ λ cosφ1
y ¼ secφ1 sinφ (A1)

with φ1 being the latitude along which scale is correct
and conformality preserved. It has Jacobian

@x
@λ ¼ cosφ1

@x
@φ ¼ 0

@y
@λ ¼ 0 @y

@φ ¼ secφ1 cosφ

" #
: (A2)

The projection’s inverse is

φ ¼ arcsin y cosφ1

� �
λ ¼ x secφ1: (A3)

The sinusoidal is defined as

x ¼ λ cosφ
y ¼ φ: (A4)

If we let A be the cylindrical equal-area and B the
sinusoidal, then A0 is given by the inverse of k � A
like so:

φ0 ¼ arcsin k sinφð Þ
λ0 ¼ kλ: (A5)

Notice that φ1 does not appear in A0; regardless of
choice for φ1, they all result in the same A0. Any A0

will undo the distortion enacted by A at P0, but in
this case, the influence of φ1 gets removed not only
from P0 but throughout the projection because the
projection parameterized by any φ1 is just an affine
scaling of the same underlying projection. This
removal will be counteracted by MA, computed as

NA ¼ k � I þ 1� kð Þ � TA Pð Þ
¼ kþ 1� kð Þ cosφ1 0

0 kþ 1� kð Þ secφ1

� �

MA ¼ NA

detNA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1�kð Þ cosφ1
kþ 1�kð Þ secφ1

q
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1�kð Þ secφ1
kþ 1�kð Þ cosφ1

q
2
4

3
5

by Equations (2.1), (3.4), and (A2), given
P0 ¼ 0�E; 0�Nð Þ. No correction is required for B
because sinusoidal has no distortion at P, so MB ¼
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I and can be ignored. B A0ð Þ=k is given by applying
Equation (A4) to Equation (A5):

x ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2φ

q
y ¼ arcsin k sinφð Þ=k: (A6)

By Equations (3.4) and (A6), then,

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1�kð Þ cosφ1
kþ 1�kð Þ secφ1

q
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1�kð Þ secφ1
kþ 1�kð Þ cosφ1

q
2
64

3
75 � λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2φ

p
arcsin k sinφð Þ=k

" #

(A7)

and thereby the homotopy from cylindrical equal-area
to sinusoidal is

x ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2φ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1� kð Þ cosφ1

kþ 1� kð Þ secφ1

s

y ¼ arcsin k sinφð Þ
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1� kð Þ secφ1

kþ 1� kð Þ cosφ1

s
: (A8)

Parameterized with k ¼ 0:226 and φ1 ¼ 0 (such that
Equation (A6) suffices), this formulation results in a
projection that is practically indistinguishable from the
pseudocylindric limiting form of the equal-area pseudo-
conic projection devised by Nell (1890). Nell’s is the first
known equal-area pseudocylindric with a pole-line, and is
a compromise between the sinusoidal and the equal-area
cylindric with φ1 ¼ 0 (Lambert’s). Unlike Nell, no itera-
tion is required in computing Equation (A8), illustrating
the technique’s characteristic computational efficiency.

To illustrate the asymmetry noted in Section 4.2, we
give the reverse homotopy from sinusoidal to cylind-
rical equal-area, omitting the intermediate calculations:

x ¼ λ cosφ cosφ1

cos kφð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1� kð Þ secφ1

kþ 1� kð Þ cosφ1

s

y ¼ sin kφð Þ secφ1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1� kð Þ cosφ1

kþ 1� kð Þ secφ1

s
: (A9)

This projection is the same as Kavraiskiy’s fifth,
matching his recommended parameterization at
k ¼ 0:738340936 and φ1 ¼ 29:8924267�.

A.2 Lambert azimuthal equal-area and Albers conic

Albers and Lambert azimuthal equal-area have two
highly divergent topologies. The perimeter of Albers
is the same as a pseudocylindric projection’s: pole lines
and the 180th meridian replicated left and right.
Lambert, on the other hand, projects the center’s anti-
podal point as a circle of radius 2, given unit sphere.
With the constraint that the Lambert be centered on

the pole, a homotopy for the two is trivial because
Lambert is a limiting form of Albers, with both stan-
dard parallels being the pole.

When Lambert needs to be centered elsewhere, how-
ever, no obvious solution makes itself known. Jenny
(2012) proposed a transformation from Lambert azi-
muthal to transverse Lambert cylindrical equal-area pro-
jection through Albers by using the limiting-form
relationship of Lambert to Albers, with other adjust-
ments. However, in order to keep the region of interest
away from the split that appears as soon as the homo-
topy’s parameter leaves 0, the Lambert azimuthal must be
rotated, pushing the region of interest into higher-distor-
tion portions of the projection. This is not satisfactory
because the region of interest is where low distortion is
most desired. Jenny and Šavrič (2017) acknowledge this
shortcoming and propose an improved transition via a
transverseWagner. However, applicability of theWagner
route is limited to “portrait format” maps. Jenny and
Šavrič (2017, p. 6) write:

A … conic transformation remains in the adaptive
composite projection for landscape-format maps for
transitioning between the azimuthal (for maps at con-
tinental scales) and the conic (for larger scales) projec-
tions . . .. However, distortion caused by the conic
transformation is comparatively large . . .. Improving
this transformation between the Lambert azimuthal
and the Albers conic projections is an open challenge.

Here we meet this challenge.
The oblique Lambert azimuthal equal-area from the

sphere is formulated as

z ¼
ffiffiffi
2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinφ3 sinφþ cosφ3 cosφ cos λ

q
x ¼ z cosφ sin λ
y ¼ z cosφ3 sinφ� sinφ3 cosφ cos λ

� �
(A10)

after Snyder (1987), with its inverse being

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
�c ¼ 2 arcsin

ρ

2
φ ¼ arcsin cos c sinφ3 þ yρ�1 sin c cosφ3

� �
λ ¼ arctan x sin c; ρ cosφ3 cos c� y sinφ3 sin c

� �
(A11)

and arctan being the typical two-argument form
yielding the full range ½�π; πÞ. φ3 is the latitude at
which no distortion is wanted, achieved at the cen-
tral meridian only.

The standard Albers from the sphere is formu-
lated as

n ¼ sinφ1 þ sinφ2

2
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ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2φ1 þ 2n sinφ1 � sinφ

� �q
n

θ ¼ nλ
x ¼ ρ sin θ
y ¼ �ρ cos θ: (A12)

Its inverse is not needed here because Albers serves as
B, for which only forward is used.

Let Lambert azimuthal equal-area beA and Albers be B.
Lambert is undistorted at its point of obliquity (φ3, 0).
Albers is undistorted all along selectable constant latitudes
φ1 and φ2. The angular extent of the Albers wedge is
determined by n. Let us assume that sinφ3 is chosen to
be n to place it about halfway between the standard paral-
lels. Albers would be distorted at φ3 – in fact, it reaches a
local maximum there – unless φ1 ¼ φ2 ¼ φ3. Hence,
something must be done for small k so that the area
around φ3 has low distortion then. We could address this
by means ofMB as described in Equation (3.2).

Another method presents itself based on the char-
acteristics of Albers. We are free to vary the standard
parallels insofar as the sum of their sines is constant so
that we do not vary the angular extent of the cone.
Hence, if we start at k ¼ 0 with φ1k ¼ φ2k ¼ φ3, and
gradually move φ1k and φ2k apart as k ! 1, we achieve
the needed effect. So,

sinφ1k ¼ sinφ1 þ 1� kð Þ sinφ3 � sinφ1

� �
sinφ2k ¼ sinφ2 þ 1� kð Þ sinφ3 � sinφ2

� �
:

This frees us to use the simplest form of the transfor-
mation. Given A as Equation (A10), A0 as Equation

(A11), and B as Equation (A12), the homotopy follows
immediately from Equation (3.1). The configurable
parameters φ1 and φ2 are taken as φ1k and φ2k for
each k. Delineated, using definitions from Equations
(A10) and (A12) unless replaced here:

xL ¼ kz cosφ sin λ
yL ¼ kz cosφ3 sinφ� sinφ3 cosφ cos λ

� �
ρL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2L þ y2L

q
cL ¼ 2 arcsin

ρL
2

φL ¼ arcsin cos cL sinφ3 þ yLρ
�1
L sin cL cosφ3

� �
λL ¼ arctan xL sin cL; ρL cosφ3 cos cL � yL sinφ3 sin cL

� �
ρA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2φ1k þ 2n sinφ1k � sinφL

� �q
θ ¼ nλL

x ¼ ρA sin θ
k

y ¼ �ρA cos θ
k

: (A13)

The results are as shown in Figure 2, with distortion
diagrams as Figure 3. We do not address the matter of
the perimeter here; its description is complicated and not
instructive for other homotopies. Most practical uses of
this particular homotopy would bound the region well
short of the topological perimeter by some easily described
means such as a rectangle or as north/west/south/east
extents, mapped.

In a reverse homotopy going from Albers to Lambert,
we might again choose to situate P about halfway
between the two standard parallels so that we converge
most directly from Albers to Lambert azimuthal. To
achieve that, we could use MA as described in Equation

Figure 2. Homotopy from Lambert azimuthal equal-area to Albers,
ffiffiffi
k

p
in 0.2 increments.
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(3.2). This would correct for the fact that P reaches a
local maximum of distortion on the Albers, whereas if
left uncorrected, P would be the point of no distortion
and the standard parallels would gain distortion.

However, just as in the forward homotopy, a better
method suggests itself. Ideally, we would want the benefits
ofAlbers to dominate for small k. The benefit ofAlbers is in
the two standard parallels having no distortion. We can
protract those benefits beyond the vicinity of k ¼ 0, at least
on the Albers side of the transformation.We can do this by
using a different Albers parameterization for the inverse,

one whose forward we will call Â. Its parameterization is

contrived so that Â has standard parallels that coincide in
Cartesian space with the standard parallels of k � A. (See
Figure 4.) This works because as k ! 0, Â ! A. Because

the paths of no distortion on Â coincide with those on
k � A, no correctional affine transformation is needed and
the homotopy retains more “Albers-ness” over the low
parametric space as compared to a rote approach
usingMA.

Without getting into computational details, the result
of this method from Albers to Lambert, and the round-
trip return via Equation (A13), can be seen in the video
“Albers-Lambert azimuthal round-trip homotopy” in
the Supplementary Material. The corresponding anima-
tion showing distortion can be seen in the video “Albers-

Lambert azimuthal round-trip homotopy distortion” in
the Supplementary Material. Lower-quality versions can
also be found at https://youtu.be/D1CuUPi2yA0 and
https://youtu.be/AcTFAXPLReE.

Figure 3. Patterns of maximum angular deformation, 10� increments, deeper color signifying greater distortion.

Figure 4. Â with standard parallels (green dashes) coincident to
those of k � A (solid green).
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