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ABSTRACT
Sampling is a fundamental problem in computer science and statis-
tics. However, for a given task and stream, it is often not possible to
choose good sampling probabilities in advance. We derive a general
framework for adaptively changing the sampling probabilities via a
collection of thresholds. In general, adaptive sampling procedures
introduce dependence amongst the sampled points, making it di�-
cult to compute expectations and ensure estimators are unbiased
or consistent. Our framework address this issue and further shows
when adaptive thresholds can be treated as if they were �xed thresh-
olds which samples items independently. This makes our adaptive
sampling schemes simple to apply as there is no need to create
custom estimators for the sampling method.

Using our framework, we derive new samplers that can address
a broad range of new and existing problems including sampling
with memory rather than sample size budgets, strati�ed samples,
multiple objectives, distinct counting, and sliding windows. In par-
ticular, we design a sampling procedure for the top-K problem
where, unlike in the heavy-hitter problem, the sketch size and sam-
pling probabilities are adaptively chosen.

CCS CONCEPTS
• Mathematics of computing → Probabilistic algorithms; •
Theory of computation → Sketching and sampling;

KEYWORDS
Streaming, priority sampling, Top-k, heavy hitters, distinct count-
ing, sliding windows, data sketching
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1 INTRODUCTION
Sampling is a fundamental problem in computer science and statis-
tics. By reducing the amount of data processed, it can signi�cantly
improve performance and lower costs, or it can ensure that the data
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processed �ts within a system’s resource constraints. Of particular
interest are random sampling without replacement procedures as
they do not sample redundant information.

Before observing the data, it is not possible to choose appropriate
sampling probabilities. For example, given a weighted stream of
unknown length, it is impossible to choose a sampling probability
ahead of time that ensures the sample satis�es a �nite memory
budget ⌫. To guarantee a �nite budget is satis�ed, each item’s
inclusion decreases the available budget and a�ects the inclusion
probability of other items.

This dependence causes several di�culties when designing sam-
pling procedures and deriving estimators. In particular, the depen-
dence often makes it intractable to compute the inclusion probabil-
ity for each item or sets of items. When these sampling probabilities
cannot be estimated, the sample is almost useless in data analysis.
Good estimates cannot be obtained since estimators must adjust
the contribution of each item based on its inclusion probability.

These di�culties can extend to designing sampling procedures.
When the sample size is not �xed, items can be drawn indepen-
dently with weightF8 with probability c8 / F8 . For example, the
Conditional Poisson Sampling scheme is one that draws a �xed size
sample and has desirable properties; however, no known algorithm
can e�ciently draw Conditional Poisson samples.

We propose a framework, adaptive threshold sampling, that ad-
dresses all of these challenges. We use it to solve novel problems
and improve existing solutions. In this framework, samples are easy
to draw; sample sizes and probabilities can change on the �y; and
good estimators can be derived even though samples are dependent.
This framework mimics drawing independent (Poisson) samples.
Each item G is associated with an independent random value 'G and
a threshold)G . The item is included in the sample if 'G < )G . Rather
than choosing a constant threshold)G , we adjust the threshold in a
data and sample dependent way to obtain desirable properties.

Our methodological contributions revolve around making it sim-
ple to build thresholds where the resulting sample is easy to analyze.
We establish conditions when the threshold )G can be treated as
if it was a �xed threshold that yields an independent sample. This
simpli�es analysis of the sample since one can apply an existing un-
biased estimator for independent samples. Deriving and analyzing a
custom estimator based on the true sampling distribution becomes
unnecessary. When the conditions do not hold, we introduce a
more general notion of threshold recalibration that makes it easy
to compute expectations and derive new unbiased estimators for a
broader class of thresholding rules. We also provide methods for
building and composing thresholds and for merging samples. We
also prove an empirical process convergence result that further sim-
pli�es the development of good estimators and sampling designs.
It extends our theory for unbiased estimators and shows when
consistent estimators for independent samples remain consistent
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when applied to adaptive thresholding samples. It also provides
justi�cation for heuristic thresholding schemes that do not satisfy
our conditions for unbiased estimation but satisfy an asymptotic
convergence condition which may be easier to verify.

Our contributions to applications exploits our methodological
contributions to develop new or improved sketches and estima-
tors on a range of new and existing problems. For example, we
double the e�ectiveness of the state-of-the-art in sampling from
sliding windows [14] even though we use exactly the same sketch
to construct the sample. We improve merge procedures for distinct
counting sketches, handle budget constraints for samples given
variable length items, and provide a solution to a novel top-k prob-
lem, a more challenging variation of the well-studied heavy hitter
problem, where the top-k items by frequency must be returned
regardless of how small their frequency may be.

1.1 Related work
A long line of work has studied the bottom-k sample [8, 12, 24, 25],
showing how it can be used to draw weighted samples while de-
riving good estimators for sums over subpopulations as well as
estimates of their variance. These bottom-k sampling methods can
be considered an adaptive threshold sampling method where the
threshold ensures the sample size is exactly : . Extensions [6, 9]
study combining bottom-k samples. Another techniques for e�-
ciently drawing �xed size : samples is VarOpt sampling [7].

Little work has provided generalizations of the bottom-k thresh-
olding rule while providing a unbiased estimators. One notable
exception is in distinct counting applications using Uniform(0, 1)
priorities. The Theta sketch [11] provides a general 1-goodness
condition. Thresholding rules that satisfy this ensure cardinality
estimates are unbiased. For uniform sampling, a generalized thresh-
olding rule has been used for distributed sampling [33].

In addition to providing an adaptive sampling framework, our
contributions also use it to address novel problems and improve
existingmethods. Novel problems include samplingwith �xedmem-
ory budgets, multi-strati�ed sampling, and top-k queries. These
problems are more di�cult variations of existing problems. Exam-
ples of existing sketches and sampling methods that are improved
include sampling in sliding windows [14] and distinct counting
[11, 15, 29]. Our applications are provided as examples of our frame-
work’s usefulness. Bottom-k methods have been used in numerous
other applications such as set similarity [5], networking [26], time-
decayed sampling [10], and distributed sampling [13, 19, 33]

2 SAMPLING DESIGN AND ESTIMATION
We �rst review sampling without replacement and the use of �xed
thresholds for drawing samples. One key contribution of our pa-
per is under what conditions can a random, adaptive threshold be
treated as if it was a �xed threshold.

The notion of weighted or unequal probability sampling is at
the core of many sampling problems. Sampling more informative
items with higher probability leads to lower variance estimates.
Choosing an appropriate measure of informativeness allows for
accurate estimation for problems ranging from simple aggregates
to complex machine learning models [32]. Unequal probability
sampling can also arise in other situations, such as in strati�ed
sampling where strata can have di�erent sampling probabilities

or in distributed sampling where nodes may make independent
choices about the sampling rate.

2.1 Poisson sampling with thresholds
The simple sampling scheme where the inclusion decisions for each
item is independent of all others is of particular interest. That is

/8 ⇠ ⌫4A=>D;;8 (c8 ) (1)

where /8 = 1 if item G8 is included in the sample. Such schemes
are called Poisson Sampling designs. This is not to be confused
with Poisson distributed random variables. In this case, the desired
inclusion probability c8 for each G8 must be known in advance.

A �xed threshold can be used to draw such a sample. Associate
an independent auxiliary variable '8 for each item along with a
�xed threshold )8 . The item G8 is included if '8 < )8 . If '8 is contin-
uous and �8 is its cumulative distribution function (CDF), then the
probability G8 is sampled is ? ('8 < )8 ) = �8 ()8 ). Choosing a thresh-
old such that c8 = �8 ()8 ) yields a sample from the desired sampling
design. We call the variable '8 the priority of G8 and denote the
inclusion of G8 by /8 = 1('8 < )8 ). From this, it is easy to see how
the threshold )8 can be used to adjust the inclusion probabilities.

2.2 Sampling challenges and estimation
However, unequal probability sampling can lead to challenges
in sampling and estimation. For example, under memory budget
or sample size constraints, Poisson sampling can violate the con-
straints since there is some non-zero probability that all items are
sampled. It is thus natural to consider samplers that draw �xed
size samples. The natural extension of Poisson sampling to �xed
sizes is Conditional Poisson Sampling (CPS), which is obtained from
a Poisson Sampling design conditional on the sample size being
exactly : . The Conditional Poisson Sampling design has the attrac-
tive property of being the maximum entropy sampling procedure
for a set of inclusion probabilities. However, there is no e�cient
algorithm known for drawing a CPS sample or for computing the
inclusion probabilities [28].

Estimating quantities of interest can be even more problematic.
A sample is almost useless without good estimators. In unequal
probability sampling designs, an unbiased estimate of the popu-
lation total ( is given by the Horvitz-Thompson (HT) estimator,

(̂ =
’
8

G8
/8
c8

(HT)

where /8 indicates if the item G8 is included in the sample and
c8 = ? (/8 = 1) is the inclusion probability. This also provides
a solution to the subset sum problem [12] by zeroing any value
G8 that is not in the desired subset. The fundamental problem for
Conditional Poisson sampling and other sampling schemes with
dependence between items’ inclusion is that this dependence makes
inclusion probabilities and good estimators di�cult to derive.

If the problem of e�ciently sampling and computing inclusion
probabilities can be overcome, then it is possible to search for an
optimal sampling design given this estimator. When the inclusion
probabilities c8 / G8 , each term in the HT estimator is constant.
Furthermore, if the sample size is �xed at : , the HT estimator itself
is constant, and thus has minimal variance. A sample that draws



elements with probability proportional to some size G8 is called a
probability proportion to size (PPS) sample.

2.3 Adaptive threshold sampling
Designing good sampling procedures is further complicated by the
fact that the desired inclusion probabilities are often not known in
advance. They may depend on unknown properties of data stream
such as length or the variance of the data.

Our solution to the challenge of adaptively choosing the desired
probabilities is to replace the �xed threshold generating an indepen-
dent Poisson sampling scheme with an adaptive threshold that can
depend on the data. For example, adaptively choosing the threshold
can ensure that the sample �ts inside a memory budget regardless
of the size of the stream.

Mathematically, we de�ne an adaptive threshold )8 = g8 (R|D)
to be a function g8 of the data D and priorities R that determine
the sample. Like Conditional Poisson Sampling, this dependence
between the threshold and the priorities makes it di�cult to com-
pute the inclusion probability ? (/8 = 1) = ? ('8 < )8 ) needed by
the HT estimator and can make unbiased estimators di�cult to
generate. For example, suppose the data consists of individuals’ de-
mographic information. In an extreme case, consider the threshold
)8 := min{' 9 : gender 9 = Female}. Such a sample is grossly biased
as it would exclude all females. Generating an unbiased estimator
of the population is impossible for this sampling scheme.

Given the challenges introduced when samples are not drawn
independently, we are interested in the following questions. If the
thresholds depend on the data, when can an unbiased or consistent
estimator still be derived from the sample? Furthermore, when can
the adaptive thresholds be treated as if they are �xed thresholds? An
unbiased estimator for the �xed threshold would then automatically
give an unbiased estimator for the adaptive threshold.

2.4 Function classes
Though the dependence between items makes computing arbitrary
expectations di�cult, we show expectations are easy to compute
for restricted classes of functions. We consider two function classes.

Our �rst goal is to examine when one can apply an unbiased
estimator for a �xed threshold sampler to get an unbiased estimate
for an adaptive threshold sampler. Given an adaptive thresholding
scheme , we seek to �nd the most general form of an estimator that
allows the such a substitution. We �rst note that when sampling,
any estimator is naturally restricted to be a function on the sample.
This general class of functions can be expressed as the polynomial
f_2⇤0 5_ (G_,) )

Œ
82_ /8

Œ
88_ (1�/8 ). For the �rst class of functions,

we consider a simpler class of polynomials of the form

\̂ (Z,) ) =
’
_2⇤0

V_ (x_,)_)
÷
82_

/8 . (2)

Here, ⇤0 ⇢ P([=]) where P([=]) is the powerset of the indices
[=] := {1, . . . ,=}. A subscript of _ selects the indices in _. Since the
priorites ' determine/ and) we also write the estimator as \̂ (',) )
or \̂ ('). This form as a polynomial is particularly useful as the
linearity of expectations allows each monomial term’s expectation
to be computed separately.

By further restricting the class of functions, we can capture a
wider range of adaptive thresholding schemes where one has exist-
ing unbiased estimators. The second function class, the important
set of pseudo-HT estimators, are of the form

\̂ (R) =
’
_2⇤0

⌘_ (x_)
÷
82_

/̃_
8

�8 ()_
8 )

. (3)

Rather than each item having a single threshold, an item’s threshold
can change depending on the term _ in the sum. Since the thresholds
can be di�erent, the inclusion indications /̃_ can be as well.

We note that the restriction to pseudo-HT estimators is mild. For
any i.i.d. sample from a distribution ⌧ , any estimable parameter of
the distribution⌧ is equal to E⌘(-1, . . . ,-<) for some �nite< and
symmetric function ⌘ [16]. This form, which is that of a U-statistic,
is an even more restricted form than that of an HT-estimator.

2.5 Threshold recalibration
When using an adaptive threshold sampling rule, the main di�-
culty in computing expectations is due to the interdependence of
the threshold and priorities. Our main idea is that, if we consider
a monomial term ⇧82_/8 , the true adaptive threshold ) can be re-
placed with an alternative threshold )_ that is independent of the
priorities '_ . Here, superscript _ is used to denote quantities whose
values depend on _, while subscripts select indices.

This can also be seen as creating an alternative threshold sam-
pling procedure for every monomial term. Since each monomial
corresponds to a subset _ of all the items, the alternative threshold
can adapt to the data using only items not indexed by _. As long
as the alternative thresholds are not larger than the original ones,
)̃_
_
 )_ , the sample using the alternative can be computed from the

sample using the original threshold. We are particularly interested
when the alternative and original thresholds are equal, )̃_

_
= )_ .

These alternative thresholding rules are created in the following
manner. Let = be the possibly unknown number of items and '�_
denote the vector of priorities excluding those indexed by _. De�ne
the recalibrated thresholding rule and threshold with respect to _ by

g̃_8 ('�_) = inf
A
{g8 (A ) : A�_ = '�_}

)̃_ = g̃_ ('�_)  )_

In other words, given a set of priorities, we �nd the smallest possible
threshold with the given values of '�_ while ignoring the values of
priorities '_ . When the thresholding rule g is non-decreasing, the
alternative threshold is obtained by setting every priority '8 for all
8 2 _ to the smallest possible value. These recalibrated thresholds
yield a modi�ed set of inclusion indicators /̃_

8 = 1('8 < )_
8 ).

Although the true inclusion probability remains intractable to
compute, computing a conditional inclusion probability is easy.

L���� 1. The conditional inclusion probability given the recali-
brated threshold is

?

 ÷
82_

/̃8 = 1 | )̃_

!
=

÷
82_

? ('8 < )̃_
8 ) =

÷
82_

�8 ()̃_
8 ),

This provides the ability to estimate any statistic as long as the
sample size is large enough.



T������ 2. Given a statistic \ =
Õ
_2⇤0 ⌘_ (G_), the pseudo-

HT estimator below using recalibrated inclusion indicators /̃ and
thresholds )̃ is an unbiased estimator for \ .

\̂ (/̃ , )̃ ) =
’
_2⇤0

⌘_ (G_)
÷ /̃_

8

�8 ()̃_
8 )

(4)

P����. Conditioning on )̃_ and applying the tower rule gives

E

 ÷ /̃_
8

�8 ()̃_
8 )

!
= EE

 ÷ /̃_
8

�8 ()̃_
8 )

����)̃_
8

!
= E

 
E(Œ /̃_

8 |)̃_
8 )Œ

�8 ()̃_
8 )

!

= E

 Œ
�8 ()̃_

8 )Œ
�8 ()̃_

8 )

!
= 1.

Thus, E \̂ (/̃ , )̃ ) = Õ
_2⇤0 ⌘_ (G_) · 1 = \ ⇤

The lemma trivially gives an unbiased estimator for subset sums.

C�������� 3. For any subset C ⇢ [=], the following conditional
HT-estimator based on the alternative thresholds is an unbiased esti-
mator for the subset sum

Õ
82C G8 :

\̂�) (', )̃ ) :=
’
8=C

G8
/̃ 8
8

�8 ()̃ 8
8 )

.

2.5.1 Example: Bo�om-k sketches and priority sampling. Priority
sampling and other bottom-k sampling procedures choose the
threshold to be the (: + 1)C⌘ smallest priority ' (:+1) . Since the
thresholding rule is non-decreasing, we can recalibrate the thresh-
old for any item G8 in the sample by changing the priority '8 to �1.
These priorities were already smaller than the (: + 1)C⌘ smallest
priority, so changing them to �1 does not a�ect the threshold, and
)̃ 8
8 = )8 . Thus, the HT-estimator is unchanged when the original
threshold ) is substituted with the recalibrated threshold )̃ , and

\̂�) (',) ) = \̂�) (', )̃ ) (5)

is an unbiased estimator of the sum if �8 ()8 ) > 0 for all 8 2 C.
The main di�erences when deriving an unbiased estimator using

threshold recalibration compared to using existing methods are
that (1) threshold recalibration provides a constructive procedure
for updating the thresholds while existing derivations must �rst
propose a new thresholding rule that is then veri�ed to match the
existing one, and (2) we allow the alternative thresholds to di�er
for every monomial term. However, we are most interested in the
case where the original thresholds and the recalibrated ones are the
same. In this case, the original adaptive thresholds can be treated
as �xed thresholds for the relevant class of functions.

2.6 Threshold substitutability
Suppose the recalibrated thresholds )̃_ are equal to the original
oneswhenever the subset _ is in the sample. Formally, for any subset
_, /_

8 = 1 88 2 _ =) )̃_
_

= )_ . We call thresholds that satisfy
this substitutable thresholds. If a threshold only satis�es this when
|_ |  3 then we call it a 3-substitutable threshold. Substitutable
thresholds have several attractive properties. Most importantly,
unbiased estimators derived under a �xed thresholding scheme
are also unbiased under the true adaptive sampling scheme under

modest regularity conditions. Thus, substitutable thresholds can be
treated almost like �xed thresholds.

T������ 4 (T�������� ������������). Let) be a substitutable
threshold. Suppose the estimator \̂ in the form given in 2. Then

\̂ (',) ) = \̂ (', )̃ ) . (6)

This also holds if g is 3-substitutable and \̂ is at most a 3 degree
polynomial in / .

P����. Consider a term V_ (G_,)_)
Œ

82_ /8 . If
Œ

82_ /8 = 1 then
the recalibrated threshold )̃_

_
= )_ does not change. Thus, /̃_

_
= /_

as well, and V_ (G_,)_)
Œ

82_ /8 = V_ (G_, )̃_
_
)Œ82_ /̃_

8 . Otherwise,
if

Œ
82_ /8 = 0 then

Œ
82_ /̃_

8 = 0 since recalibrated thresholds are
always less than or equal to the original one. ⇤

C�������� 5. Let ) be a substitutable threshold. Suppose \̂ (', C)
is in the form given in 2 and is an unbiased estimator of \ for any
value of C 2 '0=64 () ). Then \̂ (',) ) is an unbiased estimator of \ .

P����. E\̂ (',) ) = E\̂ (', )̃ ) = E(\̂ (', )̃ ) |)̃ ) = E(\ |)̃ ) = \
where the �rst two equalities follows from Theorems 4 and 2. ⇤

The de�nition of a substitutable thresholding rule requires ver-
ifying that the original thresholds equal recalibrated thresholds
with respect to every possible subset of indices. We now provide a
simpler condition to verify substitutability that recalibrates with
respect to singletons.

T������ 6 (S��������������� ���� ����������). Let g be a
non-decreasing adaptive thresholding rule generating the threshold) .
If for any 8 2 {1, . . . ,=}, )̃ 8

_ = )_ whenever
Œ

9 2_ / 9 = 1, then ) is a
substitutable threshold.

P����. Let g (') = ) be the thresholding function for ) . We
must verify )̃_

_
= )_ for all subsets _ with non-zero probability

of being selected. Without loss of generality assume the subset
to be veri�ed is _ = {1, . . . ,:}. If Œ

9 2_ / 9 = 1, then ' 9 < )9 for
all 9 2 _. The singleton substitutability assumption allows us to
incrementally substitute one coordinate ' 9 with any value A 9 < )9
without changing the threshold if 9 2 _. Using induction, we have
) = g (A1, A2, . . . , A: ,':+1, . . . ,'=) whenever A 9 < )9 for all 9 2 _.
Since the recalibrated threshold )̃_ is simply the in�mum over the
coordinates indexed by _, it follows that )̃_

_
= )_ . ⇤

2.6.1 Variance of the HT estimator. The value of threshold substi-
tution is that it makes it trivial to obtain unbiased estimators under
adaptive threshold sampling. One can simply reuse an existing esti-
mator for a simple, Poisson sampling design. We illustrate the ease
in estimating the variance of an HT estimator using our framework.
In comparison, the priority sampling paper [12] required a one and
a half page derivation.

Section 2.5.1 showed that the bottom-k and priority sampling
threshold satis�es the conditions of Corollary 6. Thus, it is substi-
tutable. The well-known variance of the HT estimator \̂C under
�xed threshold samplingwith threshold C and an unbiased estimator
of this variance are given by

+0A (\̂C ) =
’
82C

✓
1 � �8 (C)
�8 (C)

◆
G28 , d+0A (\̂C ) := ’

82C

✓
1 � �8 (C)
�8 (C)2

◆
/8G

2
8



The squared error (\̂ (/ ,) ) � \ )2 is in the function class given by
equation 2 since the coe�cient for any monomial /_ depends only
on )_, G_ . Hence, the variance estimator for the HT estimator on
�xed thresholds is also unbiased for the adaptive bottom-k thresh-
old. That is, +0A (\̂) ) = +0A (\̂)̃ ) = E+0A (\̂)̃ |)̃ ) = Ed+0A (\̂)̃ |)̃ ) if
: � 2 due to the tower rule and unbiasedness of \̂ .

2.6.2 Other statistics. A slightly more complex case than a subset
sum is Kendall’s g correlation. Given random X,Y 2 R= , Kendall’s
g statistic is

T :=
✓
=

2

◆�1 ’
8< 9

sign(-8 � - 9 )sign(.8 � .9 ) .

This is an alternative to the usual correlation⇠>E (- ,. )/
p
+0A (- )+0A (. ).

It can capture some non-linear dependencies and is robust to out-
liers. It can be used to perform a hypothesis test whether two
variables are dependent. If a threshold ) is 2-substitutable, then an
unbiased estimate of Kendall’s g is

bT =
✓
=

2

◆�1 ’
8< 9

⇠8 9
�8 ()8 )� 9 ()9 )

/8/ 9

where ⇠8 9 := sign(-8 � - 9 )sign(.8 � .9 ). This is a form of HT-
estimator, but the terms /8/ 9 in the estimator are correlated. This
requires the more general form of the HT-estimator’s variance:

+0A (bT |- ,. ) =
✓
=

2

◆�2 ©≠
´
’
8<9

1 � c8 9
c8 9

⇠8 9 +
’

8<9,:<✓

c8 9:✓ � c8 9c:✓
c8 9c:✓

⇠8 9⇠:✓
™Æ
¨

where c8 9 = % (/8 = / 9 = 1) and c8 9:✓ = % (/8 = / 9 = /: =
/✓ ) are the pairwise and four-wise inclusion probabilities. Like
above, we can apply Horvitz-Thompson under Poisson sampling
to estimate this sum using only sampled items by replacing ⇠8 9

with ⇠8 9/8/ 9/c8 9 and ⇠8 9⇠:✓ with ⇠8 9⇠:✓
/8/ 9/:/✓

c8 9:✓
. Given a sub-

stitutable threshold ) , Theorem 4 shows that we can use c8 9 =
�8 ()8 )� 9 ()9 ) and c8 9:✓ =

Œ
80 2{8, 9,:,✓ } �80 ()80) Since (bT � T)2 is a

4C⌘ degree polynomial in the function class given in equation 2,
it is an unbiased estimator of the variance as long as the sample
always contains at least 4 items.

Other statistics of interest include skew and kurtosis. The skew
is `3/f3/2 while the kurtosis is `4/f4. Here, `: = E(- � E- ):
is the :C⌘ central moment and f2 is the variance. Like variance
estimates, the sample central moments are biased estimators of
a distribution’s population moments. Our theory reuses existing
unbiased estimators for the population moments `: . For example,
[17] provides an unbiased estimator for the :C⌘ central moment
as a degree : U-statistic. Section 2.4 showed that U-statistics have
an unbiased HT-estimator. Hence, plugging in adaptive thresholds
into this estimator yields an unbiased estimate of the population
moments whenever the threshold is :-substitutable.

Each of these cases follow a simple paradigm. Adapt an existing
estimate to use samples under a simple Poisson sampling design.
Check a condition for the adaptive thresholds. If it holds, the esti-
mator is unbiased when plugging in the adaptive thresholds.

2.7 Sequential thresholding rules
The last class of thresholds and functions consists of thresholds
whose values can be determined in a sequential manner. Although
these thresholds may not be substitutable, we show they can yield
unbiased HT-estimators. The following example motivates this.

Example (1-substitutable threshold): Suppose a data stream is
processed using a bottom-k sketch. Instead of storing only items in
the �nal state of the bottom-k sketch, suppose an item is stored as
long as it was in the bottom-k sketch at some point in the stream.
This allows aggregates to be computed over time windows [0, C]
for any time C . In this case, the threshold rule g8 is a function of
the priorities '1, . . . ,'8�1. g is trivially 1-substitutable since it does
not depend on '8 . However, the threshold is not 2-substitutable. To
see this, consider the state of the sketch after processing the entire
stream, and let G 9 be the last item included in the sample. If the data
stream is su�ciently large, then the threshold )9 must be equal to
a priority '8 of an item that appeared earlier in the stream and was
included in the sample but was kicked out of the sketch before the
end of the stream. If that earlier priority '8 changes, then the later
threshold )9 also changes. Thus, while 1-substitutability allows us
to use the HT estimator for sums, it does not allow us to compute
unbiased estimates of variances.

However, despite being non-substitutable, we show this thresh-
old can still be treated like a �xed threshold for pseudo-HT esti-
mators. We show that if there is an ordering of the data such that
the thresholding choices are made sequentially, then a pseudo-HT
estimator is unbiased. That is, we must show E
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for any _ ⇢ ⇤0 where ? (
Œ

82_ /8 = 1) > 0.
T������ 7. Given a permutation d1, . . . , d= of [=], de�ne the

future samples at time 9 to be ( 9 (d) = {d: : /d: = 1, :� 9}. If
there exists a permutation d such that the recalibrated thresholds
)̃( 9 (d)
:

= ): for all :  9 with /d: = 1, then
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for any _ such that ? (Œ82_ /8 = 1) > 0.

P����. This is a straightforward application of Fubini’s theorem.
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where : denotes the largest index such that d: 2 _. The terms
/8/�8 ()8 ) for 8 2 _\{d: } are una�ected by integration over 'd:
since d: is the index for a future sample for 8 , and the recalibration
condition ensures that modifying priority 'd: does not a�ect the
threshold )8 as long as 'd: < )d: . ⇤

In one special case where the permutation puts the priorities in
sorted order, a stronger full substitutability result is obtained.

T������ 8. Consider the sequence 'd1 > 'd2 > · · · > 'd= . If
" is a stopping time with respect to the �ltration de�ned by this
sequence, then the rule g (R) = 'd" is a substitutable threshold.



P����. The items _ = {d"+1, . . . , d=} are in the sample. By the
de�nition of a stopping time, the threshold 'd" is a function of
'd1 , . . . ,'d" . Furthermore, it is non-increasing. Applying threshold
recalibration and replacing ' 9 with �1 for all 9 > " does not
change the ordering of the �rst " priorities. Thus, the threshold
does not change, and the threshold is substitutable. ⇤

2.8 Building and composing thresholds
Thus far, we have described methods for taking an existing thresh-
olding rule and modifying it to allow for unbiased estimation. We
now examine how thresholds can be composed and samples can
be merged. A simpli�ed interpretation of our result states that the
maximum of 1-substitutable thresholding rules yields another 1-
substitutable rule, and the minimum of fully or d-substitutable rules
yields another fully or d-substitutable rule respectively. Composing
3-substitutable or fully substitutable thresholding rules preserves
3-substitutability or full substitutability.

T������ 9. Let ) 1,) 2 be 1-substitutable thresholds on a data set
D with priorities R. Let the items sampled according to) 9 be denoted
by D 9 and their indices by I 9 . Consider a thresholding rule g 0 where
g 08 is a function of D1,D2 and) 1

8 ,)
2
8 . Let)

0 be a threshold such that
) 0
8 = g 08 for 8 2 I1 [ I2 and ) 0

8  max{) 1
8 ,)

2
8 } for all 8 . If g 0 is a

1-substitutable thresholding rule for the data setD1[D2 then) 0 is 1-
substitutable threshold on the original dataset. Likewise, if ) 1,) 2 are
substitutable, g 0 is substitutable for D1 [D2, and) 0

8  min{) 1
8 ,)

2
8 }

for all 8 , then ) 0 is substitutable.

P����. For 1-substitutability, note that changing the priority
'8 for any 8 2 I1 [ I2 does not change ) 1

8 ,)
2
8 . Hence, it also

cannot change) 0
8 . Similarly, when) 1,) 2 are substitutable, one can

recalibrate priorities for items in D 9 without a�ecting ) 9 . Hence,
recalibrating priorities for items inD1\D2 a�ect neither) 1 nor) 2.
These are precisely the set of items with priority '8  min{) 1

8 ,)
2
8 }.
⇤

2.9 Priority-threshold duality
Another useful property of adaptive threshold sampling is that
adjusting priorities is equivalent to adjusting thresholds. An item
with a priority distribution �8 and per item threshold)8 is included if
'8 = ��18 (*8 ) < )8 . Equivalently, it is included if a random uniform
random variable *8 < �8 ()8 ) is less than the pseudo-inclusion
probability. This can be used, for example, when the importance of
an item and its priority distribution can change over time.

For instance, in time-decayed sampling [10] with exponential
decay, the weight of an item F8 (C) = F8 exp(�C) decreases expo-
nentially with time C after the item appear at time C08 . Thus, one can
build a sampling method which uses adaptively chooses a thresh-
old ) (C) given time varying weights F8 (C). An item is included
in the sample at time C if its priority '8 (C) = *8/F8 (C) < ) (C)
However, it is inconvenient in practice to change the weight of
existing points. Changing the threshold to increase exponentially
instead, allows the priorities to remain �xed. An item is included if
'8 = *8/F8 < exp(C)) (C).

3 APPLICATIONS AND SAMPLING DESIGNS
Although the de�nitions and theorems in section 2.3 are subtle and
abstract, we now show that they are powerful, allowing us to easily
generate sampling schemes that solve novel problems†, improve
existing sketches⇤, and unify the theory for multiple sampling
methods‡. We label the sections with the respective symbol †, ⇤, or
‡ to note the contribution our paper makes.

3.1 Variable item sizes†
Bottom-k sketches ensure the sample size is always : . However,
the memory usage of the sample can vary if items have di�erent
sizes. To guarantee a sample �ts within a given memory budget
⌫, the parameter : must be set conservatively to ⌫/!<0G where
!<0G is the size of the largest item. This is highly ine�cient if
the largest item is much bigger than the average item. Another
thresholding rule g simply takes as many items as possible that
�t within the memory budget. If priorities are sorted in ascending
order, the threshold is the priority of the �rst item which causes the
budget to be exceeded. Like a bottom-k sketch, the values of the
smaller priorities are irrelevant and can be set to 0, so the threshold
is substitutable. Thus, if the budget ⌫ � !<0G so every item has a
non-zero chance of being selected, the usual HT estimator provides
estimates of subset sums, and if ⌫ � 2!<0G the usual HT variance
estimator provides unbiased estimates of its variance.

For example, items in the 2020 Kaggle data science survey can
vary in size since the survey contains both long, text free responses
and cases where the respondent does not �nish the survey. As a
string, the maximum length of an item is 5113 characters while the
average length is 1265. A bottom-k sample that is guaranteed to
�t within a budget constraint is expected to be 1/4C⌘ the size of an
adaptive threshold sample that utilizes the entire budget.

3.2 Sliding windows⇤
Oftentimes, only recent items in a data stream are of interest. A
sliding window sampler draws a uniform sample from points that
arrive in the time interval (C � �, C] where C is the current time
and � is the length of the time window. When the arrival rate of
items changes over time, it can be impossible to draw a �xed size
sample in bounded space [4, 14]. The state-of-the-art for drawing
uniform samples from sliding windows in bounded space is given
by Gemulla and Lehner (G&L) [14]. We show this is an instance
of adaptive threshold sampling, but a highly ine�cient one. Our
framework immediately yields improved thresholds that double the
number of usable points with zero modi�cations to the sketch.

At time C , the G&L scheme consists of one set of expired samples
- (C) that occur in the time window (C � 2�, C � �] and another
set of current examples ⇠ (C) in the window (C � �, C]. Although
G&L do not describe their procedure as a thresholding scheme, we
describe it as a two stage thresholding scheme, one which samples
non-uniformly to build candidate points and one which provides
the �nal uniform sample.

The initial threshold)= (C=) for an item G= at time C= is 1 if there
are fewer than : current examples. Otherwise, )= (C=) is the :C⌘
smallest priority of the current sample ⇠� (C=) just before time C=
and the new priority '= . We note that this can be larger than the
:C⌘ smallest priority for all items in the current time window. Some



items not in the current sample may have a smaller threshold and
have already been discarded. If there are ever more than : current
examples, the largest priority item is discarded by adjusting the
threshold of all the current examples,)8 (C=) = min{)�

8 (C=),)= (C=)}.
An example that falls out of the current window is moved from
the current to expired examples, and any expired item that is two
window lengths or more from the current time is discarded. This
threshold determines whether or not an item is stored but does not
ensure that it is a uniform draw from a sliding window.

The G&L scheme assigns a �nal threshold )⌧! equal to the :C⌘
smallest priority of the combined current and expired examples.
This is guaranteed to return a uniform sample from the current
time window, although the sample size is not �xed. In this case, the
item corresponding to the threshold can be included in the sample
due to symmetry.

This bottom-k threshold, however, results in an ine�cient thresh-
old that discards half of the useful points. To see this, suppose that
items arrive at a uniform rate of 1000 per second and are assigned
Uniform(0, 1) priorities. Given a 100 second time window and a
maximum memory budget of 1000 samples in the current window,
the initial threshold for each itemmust be roughly)8 ⇡ 1% to satisfy
the budget. However, G&L takes the bottom-1000 threshold of items
in both the current and expired windows, which contains 200,000
items. This gives a threshold of roughly 0.5%. Since all thresholds
are)8 ⇡ 1% and we simply take the min of thresholds in the current
window, we will return a threshold near the ideal threshold of 1%.

Our adaptive thresholding framework immediately provides a
much improved threshold. We note that the thresholding rule con-
sists of two parts, a sequential sampling rule, and a sequence of
minimum operations on the thresholds. The sequential rule gener-
ates 1-substitutable thresholds. and taking the min of thresholds
preserves 1-substitutability. Thus, taking another min of all the
thresholds in the current examples yields another 1-substitutable
threshold. That is )improved (C) = min82⇠ (C ) )8 (C=). This threshold
)improved (C) is constant over the current timewindow (C�X, C]. Thus,
1-substitutability implies full substitutability by theorem 6, and the
threshold yields a uniform sample. Since the per-item threshold of
the current examples can be calculated from the expired examples
and earlier current examples, computing the improved threshold re-
quires no additional storage, and the adaptive sampling framework
provides the improvement for free.

Figure 1 shows the evolution of the per item thresholds )8 (C8 )
over time and the much smaller threshold used by G&L to construct
a sliding window sample. Figure 2 shows the behavior when there is
a spike in the item arrival rate. Not only does our adaptive threshold
sampling framework yield nearly twice as many samples when the
item arrival rate is steady, it recovers from the spike faster.

3.3 Adaptive sampling for top-k and
disaggregated subset sums†

Adaptive thresholding can also be used to modify a frequent item
sketch into a top-k sketch that also supports further aggregations.
Given a parameter<, a frequent item sketch returns all items where
the proportion of times each appears is > 1/<. This can be done
with $ (<) space using the Misra-Gries [23] or equivalent Space-
saving sketch [22]. The top-k problem requires returning the top :
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item arrival rate (bottom). This is because G&L gives an un-
derestimate of the threshold (top).

items by frequency. Unlike the frequent item problem, there is no
guarantee on the minimum proportion of times these top-k items
appear. This makes the top-k problem a more challenging variation
of the frequent item problem. To use frequent item sketches for the
top-k problem, the appropriate size parameter< must be known
in advance. It can also be useful for the sketch to support further
aggregations. For example, one may wish to analyze web page
impressions and �nd the frequently viewed pages. One may then
wish to further aggregrate pages by topic. This disaggregated subset
sum problem is addressed by [21, 30].

This problem can be seen as an adaptive sampling procedure
which learns to downsample infrequent items, leaving the frequent
ones. By virtue of being an adaptive threshold sampling procedure,



it automatically supports unbiased estimation of counts and further
aggregations using the HT-estimator. This leads to the following
adaptive threshold sampling procedure. For each point GC in a data
stream, assign a *=8 5 >A<(0, 1) priority 'C . Maintain a variable
length list where each entry consists of an item G8 , its priority '8 , a
threshold )8 , and a count E8 of the times it appeared after entering
into the sample. An unbiased estimate of the count of an item is
2̂8 = 1/)8 + E8 . This is the Horvitz-Thompson estimate where one
appearance of the item has pseudo-inclusion probability )8 while
the other E8 appearances have probability 1. We de�ne the adaptive
threshold) (C) at time C to be the smallest priority such that at least
: items in the sample have estimated count 2̂8 > 1/) (C). This splits
the items in the sample into infrequent itemswith 2̂8  1/) (C) and:
frequent items with 2̂8 > 1/) (C). Whenever the adaptive threshold
) (C) is updated, only infrequent items are updated. Those with
priority '8 � ) (C) are discarded. All others update their threshold
to ) (C) and their counter to E8 = 0.

This procedure can be seen as a thresholding based variation
of Unbiased Space-Saving [30]. In both, infrequent items form a
random sample of the items not assigned to a frequent item counter.
Items start as infrequent items and maintain a count of the number
of times each occurred after entering the sample. It is easy to see
that this thresholding rule is substitutable. For any subset of items in
the sample, changing their priorities to 0 has no e�ect on the sample
or thresholds. Thus, like Unbiased Space-Saving, it can be used for
unbiased estimation for the disaggregated subset sum problem.

We compare our adaptive procedure with the FrequentItems
sketch in Apache Datasketches [1, 2]. This FrequentItems sketch is
a variation of the Misra-Gries sketch [22, 23] that allows for faster
updates. For each sketch, we query for the top-k items in a stream
with : = 10 and record the number of errors in the result. Since
we wish to compare performance as the distribution of the heavy
hitters changes, we use a synthetic Pitman-Yor(1, V) preferential
attachment process that is able to generate both light tailed and
heavy tailed behavior. It is commonly used in Bayesian cluster
models. Larger values of V 2 [0, 1) result in heavier tails. More
precisely, in the Pitman-Yor process, the CC⌘ item in the stream is a
new item with probability (1 + V⇠C )/C where ⇠C is the number of
unique items seen already. Otherwise, it is equal to the 9C⌘ unique
item with probability (=C 9 � V)/C where =C 9 is the number of times
unique item 9 has been seen amongst the �rst C � 1 items.

Figure 3 shows that our procedure can accurately capture the
top-k items without prior knowledge of the distribution. It does so
by appropriately adjusting the size of the sample so that it captures
the top-k items with high probability. For distributions where the
the frequent items are well-separated from the remaining items, our
adaptive sampler requires even less space than the FrequentItems
sketch. For distributions where frequent items are not well sepa-
rated from infrequent items, the FrequentItems sketch performs
poorly. In contrast, our adaptive procedure captures the frequent
items by adjusting its size to the data. For FrequentItems, we take
the size to be 0.75 times the size of the allocated hash table.

3.4 Distinct counting for weighted samples‡
The subset sum and distinct count problems are often treated
as separate problems. However, they can be addressed using a
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size of the sketch in number of items.

single weighted, coordinated priority sample. For example, in a
freemium model, one may wish to sample paying users with prob-
ability proportional to spend but may still wish to estimate the
total population size of both paying and non-paying users in a
demographic subgroup. Draw an adaptive threshold sample with
substitutable threshold T. Estimate the distinct count of items by
#̂ =

Õ
8 /8/�8 (F8)8 ). For any subset A, estimate the subset sum

for the subset of indices A by (̂ (A) = Õ
82A F8/8/�8 (F8)8 ). This

extends the Theta sketch framework [11] to non-uniform priorities
and weighted samples and allows for per item thresholds.

3.5 Improved merges for distinct counting‡
The framework also can be used to improve merge procedures for
distinct counting sketches based on coordinated samples, such as
the MinCount/bottom-k sketch [3, 11, 15]. Given two coordinated
samples with 1-substitutable thresholds)� and)⌫ for sets� and ⌫,
one simply needs to produce a new 1-substitutable threshold with
) 0
8  max{)�

8 ,)⌫
8 } to produce another distinct counting sketch.

This generalizes the LCS sketch of [9] which speci�cally takes the
max of bottom-k thresholds. Our use of arbitrary 1-substitutable
thresholds also allows merges to be chained together. Figure 4
illustrates the improvement when taking the union of sets � and
⌫ of size |�| = 106, |⌫ | = 2 ⇥ 106, and varying Jaccard similarity.
Another scenario where improved merges can help is when one
set dominates the others in size. For example, if one set has size
|�0 | = 106, and there are 106 sets with 100 distinct items, then Theta
sketches of size 100 will result in a threshold of ⇡ 100/106 = 0.01
after merging. It will estimate the population of 101 ⇥ 106 with
error ±1%. On the other hand, only the large sketch contributes to
the error in our case. This error is ⇡ 106 ⇥ 1%, which is 100⇥ better
than that of the Theta sketch.

3.6 Frequent items for distinct counting†
A common database aggregation computes a distinct count of items
grouped by some attributes, for example, the number of distinct
users that saw an ad grouped by time and demographic variables.
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Although each distinct counting sketch is small, the group by op-
eration can create tens of millions of sketches, resulting in a large
memory footprint. Oftentimes, many of these groups contain only a
few items. Previous approaches have used counter sharing [31, 34]
and sparse representations for small counters [18]. We propose a
novel approach use subsampling.

At any point in time, rather than maintaining a bottom-k sketch
of item hashes for every group, maintain< bottom-k sketches, each
associated to a single group, and one general pool of samples. For
these< groups, denote the bottom-k threshold for group 6 by )6 .
For the general pool, we use the threshold )<0G = max6)6 .

For a new item G in group 6, if 6 corresponds to one of the<
bottom-k sketches, then add G to the sketch for6. Otherwise, add the
item and its group to the general pool if its priority is below )<0G .
If there are more than : items from the same group 6 in the general
pool, then let 60 be the group with the largest threshold amongst
the< and create a new bottom-k sketch for 6 using items from the
general pool. Replace 60’s counter with the bottom-k sketch for 6,
and move the items in the sketch for 60 into the general pool. In
both cases, if the threshold )<0G for the general pool is reduced,
discard any items with priority above the new threshold. In e�ect,
we adjust the sampling rate to be the appropriate sampling rate
for the top< groups. Equivalently, the tolerated error for a small
group is raised from being a percentage of the small group’s size to
a percentage of the heavy hitters’ group sizes.

While using a bottom-k sketch for every group forces the number
of sketches to grow linearly with the number of groups, many
small groups will not have any sampled items in this sketch. This
alleviates the problem of having too many counters.

3.7 Multi-Strati�ed sampling†
Suppose a data set of users can be strati�ed in two ways, by country
or by age. We wish to draw a single sample which is both a strati�ed
sample by country and a strati�ed sample by age and �ts within
a budget of ⌫ items. We �rst show how to generate a strati�ed
sample, and then how to control the budget.

First, maintain a bottom-k threshold g (2>D=CA~)2 for each country
2 and g (064)0 for each age0. A user G8 with country 28 and age08 has a
per item threshold of g 0(R) = max{g (2>D=CA~)28 (R), g (064)08 (R)}. Tak-
ing themaximum of substitutable thresholds yields a 1-substitutable
threshold. Theorem 6 shows the threshold is fully substitutable.

This sample has variable size< 2 [: max{=2 ,=0},: (=2 + =0)]
where =2 and =0 are the number of distinct countries and ages. We
wish to ensure the sample contains exactly ⌫ items. We modify the
stopping rule for the thresholds so that : , the number of items per
stratum, is dynamically selected. For a set of thresholds, choose
a stratum with the most number of elements below its threshold.
Decrement its threshold to the next smaller priority. Since an item
belongs to more than one stratum, one for country and one for age,
this may not decrease the total sample size. Continue decreasing
the thresholds until the desired sample size is reached. A nearly
identical argument to the bottom-k case shows that this threshold
is also substitutable.

3.8 Multi-objective samples⇤
When using samples, the importance of an item may depend on the
query. For example, an analyst may be interested in either pro�t
or revenue. Queries on pro�t ideally utilize a weighted sample
with weight proportional to each item’s pro�t. Similarly, queries on
revenue ideally weight by revenue. The existing approach by Cohen
[6] combines two coordinated bottom-k sketches, one with weights
optimized for pro�t and another optimized for revenue, to obtain a
sketch that has size  2: . This ensures the combined sketch never
does worse than an individual sketch. However, as more objectives
are added, each objective’s sketch must be made smaller. Given a
budget constraint ⌫ and 2 di�erent objectives, each objective can
only be allocated a sketch with space ⌫/2 . When sketches have high
overlap, the size of the combined sketch can be much less than the
budget. For example, if every objective assigns highly correlated
weights to each item, then the priorities are highly correlated as
well. Hence, sketches for every objective are nearly the same and
approximately ⌫/2 of the budget ⌫ is used after combining the
sketches. In the case where weights are scalar multiples of each
other, exactly ⌫/2 of the budget is used up to rounding.

3.9 Variance sized samples†
Priority sampling provides a relative error guarantee on the sum
provided the weights are proportional to the values in the sum.
It guarantees the variance of the error n is bounded by + (n) 
(2/(: � 1) where ( is the true sum and : is the sample size [27].
However, one may wish to have a guarantee on the absolute error
+ (n)  X2, or the weights may not be proportional to the weights.

We instead set a stopping time which stops at the �rst thresh-
old ) where the estimated variance matches the desired error,
+ ((̂) ) � X2. Here, (̂C is the HT estimator with a �xed thresh-
old C . The unbiased estimate of the variance of the HT estimator
+̂ ((̂C ) =

Õ
8 1('8 < C)G28

1�FC
FC 1(FC < 1) is discontinuous only at

jumps when the threshold is equal to some priority. At all other
threshold values, it increases continuously as C decreases. Thus,
E+ ((̂) ) = X2.

We note that while processing a stream or data �le, it is typi-
cally impossible to verify that a threshold is a stopping time with



just the information in the sample. The stopping time may be a
larger threshold that includes additional points that are not in the
sample. However, since the true variance of an estimator is strictly
increasing as the threshold decreases, it is reasonable to expect
that all thresholds where the estimated variance equals the desired
variance are close together. By slightly oversampling, one is likely
able to recover the true stopping time.

3.10 Early stopping in AQP†

Rather than explicitly constructing samples, another way to use
adaptive threshold sampling is to store all of the data but sort
items by their priorities. Given a user speci�ed standard error X ,
an approximate query processing (AQP) system can provide an
answer by using the variance sized sampling scheme given above
to determine howmany items need to be read and to stop processing
once it has read enough.

This can also be combined with other methods to de�ne a physi-
cal layout of the data that is appropriate for sampling. For example,
one can combine it with multi-objective sampling to get a layout
that is useful for multiple queries. Suppose both revenue and quan-
tity are metrics of interest in a dataset. Denote their values for row
8 by B8 and @8 respectively and their priorities by (8 = *8/B8 and
&8 = *8/@8 . One can generate a �le block consisting of a bottom-k
sample ordered by (8 and a bottom-k sample of the remaining items
ordered by &8 . Repeating this procedure on the remaining items
generates a physical layout of the data which only needs to read<
blocks to get a weighted sample of size at least<: .

4 ASYMPTOTIC BEHAVIOR
The framework we have described thus far covers unbiased esti-
mation. This excludes a number of important estimators that are
consistent but not unbiased, such as maximum likelihood estima-
tors, quantile estimators, andmore generally, any estimator which is
the maximizer of an objective function. We extend our framework
to justify using such estimators as well as using some heuristic
thresholding rules in asymptotic settings. We also show that in
asymptotic settings where the inclusion probabilities go to 0, all
priority distributions are asymptotically equivalent to appropriately
weighted uniform distributions used in priority sampling.

While the practical implication of this section are signi�cant, it
is largely theoretical and requires knowledge of empirical process
theory. For this reason, we �rst provide a brief overview of the main
ideas. It requires minimal prerequisite knowledge and states our
main results in a easily understandable way at the cost of rigor. We
then provide an overview for the theory we develop and techniques
we use before stating and proving our results.

4.1 Basic Overview
The main idea is to consider adaptive thresholds that either con-
verge to a �xed threshold with high probability or are close to it. We
show in what ways they can be treated as if they were actually �xed
thresholds. For example, if a thresholding rule generates a single
threshold) that is used for all points, the threshold) approximates
a �xed threshold C0 if ) 2 (C0 � n, C0 + n) with high probability
(w.h.p.) for some small n � 0. If \̂C is an estimator for \ for �xed
thresholds C . When applied to an adaptive threshold, the error of \̂)

is bounded by the worst case error |\̂) � \ |  sup |⌘ |<n |\̂C+⌘ � \ |
for estimators on that range of thresholds.

The di�culty is that we must show that the estimate at all per-
turbed thresholds \̂C+⌘ are close to \̂C . This requires a notion of
continuity which cannot be obtained from a pointwise variance cal-
culation at a speci�c threshold. However, empirical process theory
allows us to do just that.

We apply it to analyze the class of M-estimators, that is estima-
tors that maximize an objective function formed by the sum over
independent random variables. They are of the form

�= (\ ) = E= 5\ (- ) =
=’
8=1

5\ (-8 ) (8)

for some function 5 and = i.i.d. random draws from some distribu-
tion -8 ⇠ % . They include maximum likelihood estimators, quantile
estimators, regression estimators under !2 or some other loss, as
well as many neural networks. We extend this to obtain an objec-
tive �= (\ ; C) that depends on both the parameter \ as well as the
threshold C . Empirical process theory allows us to show, under the
appropriate rescaling, this objective asymptotically converges to a
Gaussian process as more data is encountered. Crucially, this Gauss-
ian process has continuous paths. In other words, when treated as
a function of C , the Gaussian process is a random, continuous func-
tion. Thus, convergence of the objective to a continuous function
can be used to obtain convergence of the estimators.

We are particularly interested in the case where the sample
size grows sub-linearly with the data. Here we de�ne an appro-
priate scaling of the thresholds and show that regardless of how
many parameters are in a priority distribution, if all priorities are
non-negative and the priority density is su�ciently smooth and
non-zero around 0, the resulting threshold sampler is asymptoti-
cally equivalent to a simple weighted sampling procedure where
the priority distribution are just parameterized by a univariate
weight. This means any priority distribution can replicated using
'8 ⇠ Uniform(0, 1/F8 ) as the priority distribution and appropriate
choices of weightsF8 . This results in an asymptotically equivalent
sampling distribution. This convergence can only be proved when
the class of functions {5\ }\ used in the objective as well as the col-
lection of thresholding functions are not too complex. Heuristically,
this means they cannot be chosen to over�t the data too much.

Together these provide our main results. Loosely speaking, the
�rst states that if (1) an estimator \̂C on deterministic thresholds
is consistent and (2) an adaptive threshold ) converges to a deter-
ministic threshold in an appropriate asymptotic regime and is not
overly complex, then the estimator \̂) on the adaptive threshold is
also consistent. The second implies that if an adaptive threshold
sample grows sub-linearly with the data and priorities are non-
negative, the precise choice of priority distribution does not mat-
ter. Any priority distribution is asymptotically equivalent to using
'8 ⇠ Uniform(0, 1/F8 ) for an appropriate set of weightsF8 .

4.2 Technical Overview
We now present an overview of the technical details. We consider
an extension of an objective function which includes a threshold
as a parameter. For any priority distribution and �xed threshold C ,



it is easy to see that the HT-estimator of an M-estimator’s objec-
tive E= 5\ (-8 ) can be expressed as an empirical expectation after
reweighting by

�̂= (\ ; C) = E= 5\ (-8 )F (', C (-8 )) where (9)

F (', C (-8 )) =
1('8 < C (-8 ))
�8 (C (-8 ))

.

Since our asymptotic results require an in�nite sequence of points,
we assume the points -8 are i.i.d. draws from some distribution
%G . The corresponding priority '8 ⇠ � (·|-8 ) is drawn from some
conditional distribution that depends only on -8 . The threshold
C (-8 ) is also a function of a data point.

We show that the suitably rescaled objective converges to a
Gaussian process, but rather than being indexed by just the param-
eter of interest \ , it is indexed by both \ and the threshold C . This
convergence holds when both the function class {5\ }\ and the class
of thresholds T are not too complex.

This allows us to prove consistency of M-estimators under adap-
tive thresholding schemes. If a threshold)= converges in probability
to a deterministic threshold C , then the objective under the random
threshold �̂ (\ ;) ) and �xed threshold �̂ (\ ; C) converge to the same
limit under the continuity of Gaussian processes. Hence, if an es-
timator is consistent under the deterministic threshold, it is also
consistent under the random threshold.

Note that the threshold in this case need not be substitutable, nor
does one need to be able to recalibrate it. Heuristic thresholding
rules may be used as long as they converge to an appropriate limit.

We consider two asymptotic regimes, one where the adaptive
thresholds converge to �xed thresholds and sample sizes grow
linearly with the data, and one where the sample sizes grow sublin-
early. The �rst case is straightforward and relies only on the closure
properties of bounded uniform entropy integral function classes to
prove a Donsker result that =�1/2 (�= (\ , C) � � (\ ))

?
! ⌧%\ ,C for an

appropriate Gaussian process⌧%\ ,C . For the latter case where the
sample size grows sublinearly, we not only need to rescale the ob-
jective but also the thresholds to obtain convergence. In this regime,
we show that the shape of the priority distribution is asymptoti-
cally irrelevant. The asymptotic distribution is only a�ected by the
scaling of priorities. Given convergence of the objective, we can
prove our main result

T������ 10. Let \̂ be an M-estimator for \0 under some distri-
bution %\0 , and suppose its objective �= (\ ) = E= 5\ (-8 ) satis�es the
conditions of the M-estimator consistency theorem 2.12 in [20]. Sup-
pose there is a sequence of constants 2= ! 20 � 0 such that 2== ! 1
and thresholds ) (=) 2 T with 2=) (=) ?

! ) . If {5\ }\ and T satisfy
the conditions of theorem 12 then the HT-estimate of the objective
�̂= (\ ,) (=) ) yields a consistent estimator \̂ (=)

) (=) of \0.

P����. Under these assumptions, theorems 12 and 11 and the
continuous mapping theorem show that the HT-estimate of the
objective also satis�es the the conditions of the M-estimator con-
sistency theorem. Hence, \̂ (=)

) (=) is consistent. ⇤

The basic setup for proving convergence to an empirical process
starts with a class of functions F and an empirical measure P= for =

random draws from some measure % . This empirical measure takes
a function 5 2 F and maps it to the empirical mean

P= 5 = EP= 5 ('0) = =�1 =
=’
8=1

5 ('8 ) (10)

where '8 ⇠ % . Since this is a mean, under mild regularity condi-
tions, for any single, real-valued function 5 , the empirical mean
P= 5 converges to a Gaussian random variable by the central limit
theorem. Empirical processes theory allows one to show that, if the
class of functions F is not too complex, then {P= 5 }5 2F converges
to a Gaussian process.

5 EMPIRICAL PROCESSES
We brie�y review some theory for empirical processes to unfamiliar
readers. We refer interested readers to [20] for more details. Our
goal is to show for a class of functions� = {5\ }\ and threshold func-
tions T ,

p
=

⇣
�̂= (\ , C) � � (\ )

⌘
converges weakly to a Gaussian pro-

cess \ ,C withCov( \ ,C , \ 0,C 0) = Cov(5\ (- )FC (',- ), 5\ 0 (- )FC 0 (',- ))
for all 5\ , 5\ 0 and C, C 0 2 T as = ! 1. We can write this more suc-
cinctly as

p
=

⇣
�̂= (\ , C) � � (\ )

⌘
  q,C in ✓1 (� ⇥ T).

Proving this convergence can be done in two steps. First, the
�nite dimensional distributions and the covariance can be shown to
be Gaussian using the usual central limit theorem. Second, the em-
pirical process  (=)

q,C
:=

p
=

⇣
�̂= (\ , C) � � (\ )

⌘
is shown to be asymp-

totically tight. Asymptotic tightness ensures that the sample paths
of the process are appropriately smooth. Asymptotic tightness is
the main challenge for establishing Donsker results.

In empirical process theory, a su�cient condition for proving
asymptotic tightness is that the function class of interest is not
too complex. There are multiple measures of complexity such as
the VC-dimension, bracketing entropy , and uniform entropy. The
corresponding conditions that ensure asymptotic tightness are �nite
VC-dimension, �nite bracketing entropy integral, and bounded
uniform entropy integral with integrable envelope. For each of these
measures of complexity, there are known, broad classes of functions
that satisfy these conditions. Donsker preservation theorems show
that certain transformations of these classes preserve the conditions
on the complexity. New classes of interest can often be veri�ed
to be Donsker by showing they are contained in a class that is
appropriately transformed from these broad, base classes.

Of these conditions, we are most interested in function classes
with �nite VC-dimension, also known as a VC-class, and those with
bounded uniform entropy integral with integrable envelope, known
as a BUEI-class with integrable envelope. The envelope⌧ for a class
G is the function such that ⌧ (G) := sup62G |6(G) |. VC-dimension
is the most restrictive of the notions of complexity. Any VC-class
is also a BUEI-class. As the most restrictive measure of complexity,
it allows for the greatest range of transformations. In particular, it
allows for composition with monotone functions. BUEI-classes are
of interest because a product of BUEI-classes remains a BUEI-class.

5.1 Donsker result for �xed thresholds
We �rst consider the case where an adaptive threshold converges
to a �xed one, and the sample size grows linearly with the data.



T������ 11. Let � be a BUEI-class of functions on a data point,
and letT be a class of threshold functions that has �nite VC-dimension.
Further assume that � (C (G)) > n for some n > 0 and all G 2 X. Then,
5\ (- )F (', C (- )) has bounded uniform entropy integral. Hence,

�̂= (\ , C) = E= 5\ (- )F (', C (- )) (11)
p
=( �̂= (\ , C) � � (\ ))   0

\ ,C (12)

where  0
\ ,C

is a Gaussian process indexed by 5\ 2 � and C 2 T .

P����. Since T has �nite VC-dimension, the composition rules
for VC-classes (lemma 9.9 in [20]) give that both 1(A �C (G) < 0) and
� (C (G)) generate VC-classes since the indicator and any CDF are
monotone. Likewise, 1/� (C (G)) is a VC-class. Furthermore, it has a
measurable envelope � (G) = 1/n since � (C (G)) > n by assumption.
Since VC-classes are BUEI-classes if there exists a envelope, and
BUEI classes are closed under multiplication (theorem 9.15 in [20]),
the class of functions {6(G)FC (A , G) : 6 2 G, C 2 T } is a BUEI-class
with envelope ⌧ · � . This establishes asymptotic tightness of the
process ⇥ = {\6C }6,C where \6C is the Horvitz-Thompson estimator
for E6 when using a threshold C . Since Donsker classes are pre-
served under multiplication by a bounded, measurable function
(corollary 9.31 in [20]), G ·FC is %-Donsker for any �xed C . Since
%-Donsker classes are also closed under �nite sums, the �nite di-
mensional distributions of ⇥ converge to multivariate Gaussian
distributions. Asymptotic tightness and the central limit theorem
on �nite dimensional distributions imply that ⇥ is %-Donsker. ⇤

5.2 Donsker result on sub-linear samples
In the above result, the resulting sample sizes must grow linearly
with the data. We are interested in the case where the sample sizes
still grows to in�nity, but the inclusion probabilities go to 0. We
show that under appropriate conditions, this is su�ciently well-
approximated by a two-step procedure which downsamples the
uniformly to obtain a sublinear number of data points and then
applies threshold sampling where the inclusion probabilities are
bounded away from 0 as above.

T������ 12. Consider priorities '8 taking values in the non-
negative reals. Further suppose their conditional CDFs � (·|G) have a
linear expansion near 0

�(A ) := sup
G 2(D?? (%G )

|� (A |G) �FGA | = > (A ) if A � 0 (13)

for some weightsFG for all G 2 (D?? (%G ) such that" := supG FG <
1 and infG FG > 0.

Let� be a class of functions� = {5\ } and T a class of thresholds T
satisfying the conditions of theorem 11. Further assume that the classes
are uniformly bounded with kC k1 < ) for all C 2 T . Furthermore,
consider alternative priorities §'8 |-8 = G ⇠ Uniform(0, 1/FG ) and let
§�= (\ , C) be the estimated objective using these priorities.
Then, for a sequence 2= ! 0 such that 2== ! 1, the processes

⌧ (=)
\ ,C

:= (2=")=)1/2
⇣
�̂= (\ , 2=C) � � (\ )

⌘
  \ ,C (14)

§⌧ (=)
\ ,C

:= =1/2
� §�= (\ , C/") ) � � (\ )

�
 § \ ,C (15)

as = ! 1 where  \ ,C , § \ ,C are Gaussian processes and  \ ,C
3= § \ ,C .

We �rst outline the proof. Rather than dealing with a �xed func-
tion class as before, these conditions require proving a Donsker
result when the class of thresholds is changing with =. Bounded
uniform entropy conditions also exist for this case which ensure
convergence to a Gaussian process. However, when directly applied,
the decreasing thresholds lead to envelopes whose integrals go to1.
To handle that, we show that the random process can be generated
in two stages: a uniform sampling stage that draws a sample with
sublinear size and on the order of =2= and a second stage where
the thresholds do not go to 0. The boundedness conditions ensure
Donsker preservation results can be applied on this second stage
and obtain convergence to a Gaussian process. We then compare
the process using priorities '8 with the approximating process us-
ing §'8 and show their �rst two moments converge to the same limit.
Hence, their Gaussian process limits must also be the same.

P����. First, note that for any threshold C , inclusion of an item
-8 is equivalent to*8 < � (2=C (-8 ) |-8 ) for some*8 ⇠ Uniform(0, 1).
Since � (2=C (G) |G) = FG2=C (G) + > (FG2=C (G)) < 2=") + 2=n even-
tually for any n > 0, this inclusion event can be rewritten as two
steps. First, *8 < 2=Wn where Wn := ") + n and, if it passes this
�rst stage, *8

2=Wn
< � (2=C (G) |G)

2=Wn
. Note that this second stage uses the

conditional distribution *8
2=Wn

|*8 < 2=Wn ⇠ Uniform(0, 1). The �rst
stage of the inclusion event is a uniform Poisson sample. It thins the
data by drawing i.i.d. ⌫4A=>D;;8 (2=Wn ) draws. The resulting sample
of size ⇠= is still from the same base distribution % as the original
data. Thus, we have that

�̂= (\ , 2=C) = E= 5\ (- ) 1(* < � (2=C (- ) |- ))
� (2=C (- ) |- )

=
⇠=
=

1
2=Wn
E⇠= 5\ (- )

1
⇣
* < � (2=C (- ) |- )

2=Wn

⌘
� (2=C (- ) |- ))

2=Wn

.

Since⇠= ⇠ ⌫8=><80; (=, 2=Wn ) and=2= ! 1, it follows that ⇠=
=

1
2=Wn

?
!

1 and can be ignored by Slutzky’s lemma.
Thus, we can instead examine the convergence of the process

E⇠=q (- ) 1(*<� (2=C (- ) |- )/2=Wn )
� (2=C (- ) |- ))/2=Wn . Let V be the VC-index of T . The

threshold {� (2=C (- ) |- ))/2=Wn : C 2 T } is a VC-class with index
 V since scalar transformations do not change the VC-index and
monotone transformations composed with a VC-class do not in-
crease the VC-index. Furthermore, since � (2=C (- ) |- = G))/2=Wn !
FG C (G)/")  1 and � is a BUEI-class that is uniformly bounded
by some constant� , the empirical expectations are taken over func-
tion classes that are uniformly bounded by � . Together these imply

p
⇠=

©≠≠
´
E⇠= 5\ (- )

1
⇣
* < � (2=C (- ) |- )

2=Wn

⌘
� (2=C (- ) |- ))

2=Wn

� � (\ )
™ÆÆ
¨

(16)

converges to a Gaussian process limit with mean 0 as long as its
�nite dimensional marginals converge to multivariate Gaussians.
The law of large numbers gives that =2=Wn/⇠= ! 1. Since n can be
arbitrarily small, equation 14 is proved.

Now consider the process which replaces � (A |G) with the ap-
proximation §� (A |G) = FGA . We wish to show that the mean and
covariances of the process in equation 16 remain the same after the



substitution. Since the HT-estimator is unbiased regardless of the
choice of � , the mean is 0. Let /= = 1

⇣
* < � (2=C (- ) |- )

2=Wn

⌘
and §/=

be the same with � replaced by §� .
Note, � (2=A |G) = 2=FGA + > (2=FGA ). The di�erence in inclusion

variables weighted by the inverse pseudo-inclusion probability is

�= =
/=

� (2=C (- ) |- ))/2=Wn
�

§/=
§� (2=C (- ) |- ))/2=Wn

=
Wn

F- C (- )
�
/= (1 + > (C (- ))) � §/=

�
This gives |�= |  Wn

F- C (- ) > (1) if/= = §/= and |�= |  Wn
F- C (- ) (1 + > (1))

otherwise. Since % (/= < §/=) = > (1) and both F- and C (- ) are
bounded away from 0, the variance+0A (�=) = > (1) ! 0 as= ! 1.
Since � has integrable envelope, k 5\ k2 is bounded. The Cauchy-
Schwartz inequality gives that covariances of the processes using
� and §� are equal. Thus, �̂ in equation 14 can be replaced by §�
while still converging to the same limit. Finally, note that when
priorities are from §� , the two-stage sampling trick provides a means
to rescale the threshold. This gives §�= (\ ,UXC) 3= §�⌫ (\ , XC) where
⌫ ⇠ ⌫8=><80; (=,U). Using §� in place of � and rescaling the thresh-
old in equation 14 by 2=") yields equation 15.

In the thinning stage, the role of n is simply to ensure that
� (2=C (- ) |- ) can be upper bounded by 2= (") + n). Any value
of n that yields an upper bound yields exactly the same process in
the end. Since §� (2=C (- ) |- )  ") already, n can be set to 0.

⇤

Although the condition on the CDFs requiring a linear expansion
near 0 may appear restrictive, we note that it is satis�ed under
reasonable settings. If the priorities are drawn from conditional
densities 5 (·|- ) that are di�erentiable in a neighborhood [0, X) with
X > 0 and if 5 (0|·) is both upper bounded and bounded away from
0, then a Taylor expansion ensures the condition is satis�ed. For
example, if 5 (·|G) is the Uniform(0, 1/G) density associated with
priority sampling or an ⇢G?>=4=C80; (G) density, then the condition
is satis�ed if G can be bounded. Furthermore, even if the original
CDF does not have a linear expansion, a monotone transformation
of the priorities may be able to convert the priorities into ones
where the CDF has a linear expansion. The following lemma shows
that if the ratio of CDFs for priorities has a limit at 0 then they are
asymptotically equivalent to using Uniform priorities, where the
CDFs do have a linear expansion.

L���� 13. Consider priorities '8 taking values in the non-negative
reals. Further suppose their conditional distributions � (·|G) are con-
tinuous in a neighborhood of 0 with � (0|G) = 0 and there exists
constantsFG with infG FG > 0 such that for X ! 0+

sup
G,~

����� (X |G)� (X |~) � FG

F~

���� = > (1). (17)

There exist independently drawn priorities with conditional distribu-
tion §'8 |-8 = G ⇠ Uniform(0, 1/FG ) and a monotone transformation
d such that ? (1( §'8 < C) < 1(d ('8 ) < C)) = > (C).

P����. The conditions imply supG |� (X |G) � UG[ (X) | = > ([ (X))
by taking [ (X) = U�1~ � (X |~) for some �xed ~. Since [ is increasing
and continuous in a neighborhood of 0, for su�ciently small 1

we can simply rescale the priorities to obtain '̃8 = 1[�1 ('8 ) if
'8 2 [0,1) and '̃8 = '8 otherwise. This de�nes the function d .
Denote the CDF of aUniform(0, 1/FG ) distribution as §� (A |G) = FGA .
The priorities '̃8 = �̃�1 (*8 |-8 ) and §'8 = §��1 (*8 |-8 ) can be obtained
from the inverse probability transform for their corresponding
CDFs. Thus, the indicators are not equal only if §� (C |-8 )  *8 <
�̃ (C |-8 ) or �̃ (C |-8 )  *8 < §� (C |-8 ). Each of these happen with
probability less than supG |�̃ (C |G) � §� (C |G) | = > (C). ⇤

6 APPLICATIONS OF ASYMPTOTIC THEORY
While we have already shown that the asymptotic theory justi�es
the re-use of consistent estimators for Poission sampling, we can
also use it to justify the use of heuristically constructed thresholds.

Consider again the problem of building a sample that can provide
an absolute variance guarantee. Recall that in section 3.9, it is not
su�cient to choose a threshold where the estimated variance is
equal to the target variance. Additional points must be sampled
to ensure that the chosen threshold is the largest of such thresh-
olds. This added layer of complexity can be removed by applying
the asymptotic theory to show that the heuristically constructed
threshold without oversampling still leads to consistent estimators.

Our Donsker result show that the HT variance estimate in 7 after
centering and rescaling d+0A (\̂C ) ⇡ +0A (\̂C )) +  C/

p
= where  C is

a zero-mean Gaussian process. Since +0A (\̂C )) is increasing with
C and the error term  C/

p
= is decreasing with =, if the variance

estimator’s variance is not too large, then a Gaussian maximal
inequality can be used to show the heuristically chosen threshold
without the additional oversampling step is close to the threshold
with the desired variance.

7 FUTUREWORK AND CONCLUSION
We have provided a general framework for building sampling
schemes that adapt to the data on the �y and satisfy system con-
straints while behaving similarly to �xed thresholds. This simpli�es
creating new sampling schemes while making the resulting sam-
pled data sets easy to analyze. This framework uni�es a long line
of research on bottom-k sampling.

We demonstrate its usefulness by providing sampling schemes
that can solve a variety of existing and new problems. These in-
clude engineering problems of �tting within system and budgetary
constraints, usability problems that allow users to tune the desired
accuracy for AQP results at query time, and novel problems such
as top-k queries. This �exibility in the framework can make it more
useful in practice, by making it easier to design systems and sat-
isfy user requirements. At the same time, it ensures that the same
estimators used for �xed thresholds can also be used for adaptive
thresholds, making it easy to code just one set of estimators while
the underlying sampling schemes can be easily changed. Further-
more, these are just a few examples that apply the framework.
Future work expands on other potential applications that can be
solved with this sampling framework.
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