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ABSTRACT

Our ability to reliably name colors provides a link between
visual perception and symbolic cognition. In this paper, we
investigate how a statistical model of color naming can en-
able user interfaces to meaningfully mimic this link and sup-
port novel interactions. We present a method for construct-
ing a probabilistic model of color naming from a large, un-
constrained set of human color name judgments. We de-
scribe how the model can be used to map between colors and
names and define metrics for color saliency (how reliably a
color is named) and color name distance (the similarity be-
tween colors based on naming patterns). We then present
a series of applications that demonstrate how color naming
models can enhance graphical interfaces: a color dictionary
& thesaurus, name-based pixel selection methods for image
editing, and evaluation aids for color palette design.
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INTRODUCTION

To reason and communicate about the world, people contin-
ually — and often effortlessly — categorize elements of their
sensory experience. We perceive a world populated by ob-
jects that we label with named types, colors, shapes, tastes,
odors, and functions. Our capacity for categorization links
sensing of the physical world to language and cognition, and
underlies our ability to communicate and reference objects
in the world [16]. This observation suggests that user in-
terfaces that model human category judgments might enable
more compelling forms of reference and selection.

In this paper, we explore this idea in the domain of color
names —the linguistic labels used to describe colors. In-
terest in color names as a means to investigate links between
perception, language, and cognition was spurred by the stud-
ies of Berlin & Kay [5] in the 1960s. They asked speakers of
various languages to name a set of color stimuli and then se-
lect the most representative stimulus for each provided color
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term. Berlin & Kay noted striking regularities among the
use of color terms across cultures, leading them to posit 11
universal basic color terms (in English: blue, brown, green,
orange, pink, purple, red, yellow, black, grey, and white).
They observed that these terms were added to a language in
a similar progression across cultures. Subsequent decades
of research (e.g., [10, 14, 29, 39]) have challenged and ex-
tended this understanding. For example, more than 11 basic
color terms may exist (e.g., Russian contains two basic terms
for blue [39]), and language can have a relative effect on cat-
egorical color perception and memory [29].

The importance of color names to perception and object clas-
sification has led researchers to formulate a variety models
describing how people associate names and colors [2, 8, 20,
22, 24, 26]. Here, we extend prior models —in particular,
the non-parametric approach of Chuang et al. [8] —to pro-
pose a model-construction method for a collection of human
color-name judgments. We then demonstrate how the result-
ing model can be applied to enhance user interfaces. Our
research contributions fall into two categories:

First, we contribute a method for constructing a proba-
bilistic model of color naming from a large, unconstrained
set of human color name judgments. We model color-name
associations using multinomial probability distributions that
describe the likelihood of a color value given a color name,
or vice versa. We then define useful operations in terms of
this model. We apply our method to results from a large
web-based survey [25] containing over 3 million entries and
over 100,000 unique color name responses. Our method in-
cludes a scaling technique that reduces this survey data to a
small set of maximally information-preserving color terms.
We then describe how the model can be used to map between
colors and names and we define metrics for color saliency
(how reliably a color is named) and color name distance (the
similarity between colors based on naming patterns).

Second, we present novel interfaces enabled by our color
naming model. These applications help users express color
in new ways and offer designers new means for evaluating
their designs. We describe a color dictionary & thesaurus
tool for name-based color selection and browsing of color
synonyms and antonyms. We then describe techniques for
name-based pixel selection for image editing. We introduce
methods to (1) suggest highly-probable color names to de-
scribe image pixels, (2) select image regions by color name,
and (3) provide a new “magic wand” tool based on color
name similarity. Finally, we show how color name overlap
and saliency statistics supported by our model can aid the
design and evaluation of color palettes for visualization.



RELATED WORK
Our research extends two streams of prior work: models of
color naming and user interfaces for color design.

Models of Color Naming

Researchers have devised multiple approaches for modeling
human color naming, both to aid scientific understanding
and to improve applications such as gamut mapping [24] and
image analysis [20, 22]. One approach is to simply parti-
tion color space, e.g., by uniform subdivision of hue in HLS
color space [17]. Another is to create a color dictionary that
maps color names (basic color terms plus modifiers such as
“light”, “dark”, and “vivid”) to a single color value. This
approach is used by the ISCC-NBS standard [15] and de-
rived variants [4, 11, 20]. These approaches map colors to
names in a deterministic, disjoint fashion: they do not model
association strength or overlap among color names.

Instead, color scientists use statistical models fitted to a cor-
pus of human color-name judgments. Some researchers em-
ploy parametric models using a mixture of Gaussian [24,
26] or Gaussian-Sigmoid distributions [2]. While paramet-
ric models can suppress noise and be described with a small
set of parameters, they make assumptions about the shape of
named color regions that may not match empirical distribu-
tions. For example, a Gaussian ellipsoid may assign proba-
bility mass to color values outside the gamut of interest.

In response to these shortcomings, others have advocated
the use of non-parametric models that avoid assumptions re-
garding the shape of color name distributions. Moroney [22]
models color naming using histograms over a binned color
space. Chuang et al. [8] model color-name association using
multinomial conditional probability distributions. Chuang
et al. also define a statistic for color salience — the unique-
ness of a color name — in terms of model entropy. Using the
330 colors of the World Color Survey [10], they find good
agreement among high salience scores and basic color name
“foci” identified in previous work [5, 35].

One issue affecting model construction is the size and gran-
ularity of training data. Early work uses results from con-
trolled settings, often limited to a few hundred color stimuli
(e.g., [2]). More recent work (e.g., [8, 21, 25, 26]) employs
web-based surveys to create larger corpora (though limited
to the SRGB gamut of computer monitors). While web-
based surveys sacrifice the controlled display and lighting
environment of a laboratory, they offer access to a greater
variety of people and display types. Researchers have noted
consistent results when comparing such crowdsourced data
sets with data gathered under controlled conditions [21, 26].

An alternative approach used in computer vision is to con-
struct probabilistic naming models in an automated fashion
[30, 36]. Given color names as input, a system can query a
search engine for images associated with that color term; the
image pixels can be used to fit a statistical model of color-
name association. This approach has the advantage of au-
tomated construction, and has led to better performance on
classification and retrieval benchmarks for photographic im-

ages. However, this approach requires that the color vocab-
ulary be known a priori, and provides little insight into the
relative likelihood of color terms. Here, we seek to learn the
kind and frequency of color terms used by people.

In this paper, we build on the approach of Chuang et al. [8] to
construct a non-parametric probabilistic model of color nam-
ing. As we will describe, we modify their definition of color
salience to improve comparability among colors and intro-
duce name-based color similarity measures. We demonstrate
how to construct such models from a large, unconstrained set
of color-name judgments. In particular, we use over 3 mil-
lion color-name responses collected from readers of the web
comic XKCD. While prior work [22] has required that the
desired number of color names be given as a model param-
eter, we introduce a scaling routine that uses a measure of
information loss to determine the number of color names.

Tools for Color Design

Researchers in HCI, Computer Graphics, and Visualization
have devised myriad tools and algorithms for assisting col-
orists. One prominent class of applications is interfaces for
color selection or palette design [1, 3, 12, 19, 28, 37]. For
example, PRAVDACo lor [3] and ColorBrewer [12] suggest
color palettes for encoding data in visualizations based on
data types and/or cardinality. Meier et al. [19] apply theories
of artistic color harmony [13, 18] to assist interactive color
selection. Cohen-Or et al. [9] use these same theories to for-
mulate automated color harmonization methods for image
composition. To our knowledge, none of these tools incor-
porate nuanced models of color naming to aid color selection
or image analysis. In this paper, we explore ways in which
color naming models can augment color picking, pixel selec-
tion for image editing, and the evaluation of color palettes.

CONSTRUCTING COLOR NAMING MODELS

To construct a color naming model, we first process the in-
put data: a collection of color-name pairs comprising nam-
ing judgments by human subjects. We present a method for
reducing unconstrained text responses describing millions of
unique colors into a compact table of color-name correspon-
dences. We then construct a non-parametric probabilistic
model of color naming that supports saliency and similarity
metrics based on color-name association.

Data Collection

We start with a color naming data set: a list of color-name
pairs provided by human subjects. Here a “color” (or “color
value”) is a stimulus shown to a respondent and a “color
name” (or “color term”) is a text label provided by the re-
spondent to describe that stimulus. Prior work has elicited
naming judgments using physical color chips or calibrated
monitors. Recent work [8, 21, 26] has applied crowdsourc-
ing on the web to collect color naming data and verified that
the results are consistent with those from controlled settings.

In this paper, we use a publicly-accessible English-language
color naming data set [25] compiled by Randall Munroe, the
author of the popular web comic XKCD. The data was col-
lected through a web survey advertised on the XKCD site.



Respondents were asked to first provide basic demographic
information: chromosomal sex, native language, color blind-
ness, and optional information regarding monitor type, tem-
perature and gamma. Participants then named color swatches
shown against a white background. Each color value was
expressed as a coordinate in SRGB color space; values were
uniformly sampled from the full RGB cube. The text re-
sponses were unconstrained and respondents were free to
continue naming new swatches for as long as they wished.

The data set contains over 3.4 million responses from 152,401
sessions (103,430 self-reported males, 41,464 females, and
7,507 declined to state). To our knowledge this is the largest
color naming data set in existence. The top ten native lan-
guages are English 74.6%, Not stated 12.2%, German 2.7%,
Spanish 1.3%, French 1.2%, Dutch 1.1%, Swedish 0.8%,
Portuguese 0.6%, Polish 0.5%, and Russian 0.5%. The num-
ber of responses per participant ranges from 1 to 2,345 (me-
dian 18, inter-quartile range 10-30 responses). To combat
malicious responses, the data set includes a per-user “spam
score” that penalizes (a) responses that are not used by any-
one else and (b) the same response applied across high vari-
ations in hue. We keep only the responses from users with
normalized spam scores < 0.5. The spam-filtered data set
consists of 3,252,134 color-name pairs spanning 2,956,183
unique RGB triples and 132,259 unique color names.

The Color-Term Count Matrix

The starting point for our model is a table (7) of color-term
counts in which rows represent colors, columns represent
color terms, and each cell contains the count of responses
that use a color term to describe a corresponding color. Un-
surprisingly, a naive tabulation yields a very sparse, high-
dimensional matrix. In this section, we describe our method
for reducing the data to a compact and usable form. To limit
the number of colors (table rows), we bin color values within
a perceptual color space (CIE L*a*b*). To reduce the num-
ber of terms (table columns), we apply a dimensionality re-
duction method. Finally, we smooth and filter the data.

Representing Color Values

To reduce the number of unique colors, we need to bin them
within a suitable color space. Uniform binning in sSRGB is
undesirable, as sSRGB coordinates model color output de-
vices, not human perception: distances in SRGB space are
not generally consistent with perceptual judgments of color
difference. We want to group colors in a perceptually uni-
form fashion, preferably using a simple grid-based scheme.

Accordingly, we bin colors within the standard CIE L*a*b*
color space using a D65 reference white point '. CIE L*a*b*
is a 3-dimensional perceptual color space based on opponent
process theory [27]. The L* dimension represents lightness
and ranges from black (L*=0) to white (L*=100). The a*
and b* dimensions both range from roughly -100 to 100 and
correspond to green-red and blue-yellow opponent channels,
respectively. Euclidean distances within CIE L*a*b* color

'D65 is the standard reference white point used by sSRGB, in which
the source color values are defined.

space approximate color judgments made by human sub-
jects: a distance of 2.3 is roughly equal to one Just Notice-
able Difference (JND) [31]. Measurements made within a
local patch of L*a*b* space tend to correlate well with hu-
man judgments; however, global measurements across the
color space can exhibit significant discrepancies. In response,
color scientists have devised more sophisticated metrics for
L*a*b* space that provide a closer fit to perceptual judg-
ments. We use the current standard, CIEDE2000 [32], as
our primary color distance metric.

For the applications described in this paper, we construct
color models using a bin size of 5 units within L*a*b* space.
Thus each bin has a radius of ~1 JND and so subdivides
color space near the theoretical resolution of human color
differentiation. Using 5-unit bins, the number of colors (ta-
ble rows) reduces from 2.3 million down to 8,325. For com-
parison, using 10-unit bins results in 1,291 colors. To subse-
quently look up an input color in the table, we map it to its
matching bin (interpolation methods could also be used).

Processing Color Terms

Unconstrained text responses result in a large and at times
amusing variety of color terms. While most responses use
common one or two word phrases (“blue”, “lavender”, “dark
grey”, “hot pink”), there is a long tail of responses including
rare (“butter yellow”) and bizarre (“velociraptor cloaca’) de-
scriptions. Entity resolution is also a concern, as the same
color name can have multiple variants (“blue green”, “blue-
green”, “blue/green”) and include misspellings (“fuchsia”
vs. “fuschia” & “fushia”). We would like to group variants
representing the same color term, eliminate noise, and re-
duce the dimensionality from 132,259 color terms to a more
manageable yet representative set.

To handle variants of punctuation and spacing, we first strip
all non-alphabetical characters (numbers, punctuation, white-
space, efc) from the response. This process maps many vari-
ants to the same term (e.g., the previous blue-green examples
map to “bluegreen’), removing about 20,000 variants and re-
ducing the distinct term count to 114,860. We then tabulate
a color-term count matrix 7" using the resulting terms.

Next, we compute a lower-rank approximation of the color-
term matrix to reduce dimensionality and remove noise. The
idea is to remove the color terms (columns) that contribute
the least to the “information” contained within the data set.
We quantify this information using the Frobenius (element-
wise) matrix norm |T'| = /%; ;(T5;)?.

We first compute the sum of squares of each matrix column
and sort the columns in ascending order. We then incremen-
tally subtract these values from |T'| to determine the matrix
norm |T}| for the color-term count matrix with the k-lowest
columns removed. Given a threshold percentage value p, we
can now find the maximal value of k such that |Ty|/|T| > p.
Retaining 99% of the information (p = 0.01) reduces the
number of color terms to 66,526 — still a large a number.
The model used in this paper retains 95% of the information
(p = 0.05), resulting in a reasonable set of 179 color names.
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Figure 1. Color Saliency Map. Each point represents a 5x5x5 bin in CIE L*a*b* color space; slices for every other L* value are shown. The area
of each point is proportional to its saliency: large points indicate consistently named colors, small points indicate colors that exhibit high naming
confusion. Interestingly, visible clusters correspond to basic color terms identified by Berlin & Kay (blue, brown, green, grey, pink, purple, etc).

Our reduction technique optimizes the same metric as Sin-
gular Value Decomposition (SVD), the method underlying
dimensionality reduction techniques such as Latent Seman-
tic Analysis (LSA). Whereas SVD finds a new set of basis
vectors to describe the data, our method simply zeroes-out
the columns that make the smallest contribution to the matrix
norm, preserving each color term as a separate dimension.

While the above method successfully reduces color term di-
mensionality, it does not handle misspellings. Fortunately,
the reduced color space is now small enough that manual
correction takes only a few minutes. We add a hand-crafted
lookup table to the first stage of our processing pipeline to
correct identified misspellings. We then re-tabulate 7" on the
spell-corrected set of terms and perform dimensionality re-
duction again to produce a final set of 153 color names.

Smoothing & Simplification

To arrive at our final table, we smooth the data and filter iso-
lated responses. To perform smoothing, we first represent
the color-term count matrix as a three-dimensional grid in
L*a*b* space. We convolve the grid with a 3x3x3 kernel
with a value of 4 in the center and 1 in all other positions.
For each grid cell, we average over the adjacent non-zero
grid cells weighted according to the kernel. We then round
the smoothed cell values to the nearest integer count. We
find that this approach adequately smooths the space with-
out over-blurring. Next, we zero-out any table cells with a
value of 1. We do this for two reasons: (1) if a color-term
pair has only a single “vote”, there is no corroboration of
the judgment, and (2) dropping these cells significantly re-
duces the size of the model with no discernible detriment in
subsequent applications.

A Probabilistic Model of Color Names
Given a color-term count matrix, we can model the probabil-
ity distributions of colors and names. We then use this model

to compute additional metrics to analyze the effects of color
naming. Here we describe our modeling approach and the
model-based metrics used in our subsequent applications.

Following Chuang et al. [8], we model the likelihoods of col-
ors and names as multinomial probability distributions. We
are concerned with the random variables C' (which takes on
color values) and W (which takes on color names). We use
the symbols ¢ and w to denote specific values taken by these
variables; the symbols also serve as indices for the rows (c)
and columns (w) of the color-term count matrix 1°.

We can now express the likelihood of a color value given a
specific color name as the conditional probability p(C|w).
For each color ¢ taken by C, we compute the probability by
normalizing the rows of T":

p(C‘w) = Tc,w / Z Tc7w (1)
Similarly, the probability p(W|c) of a name given a color is:

p(w|c) = Tc,w / Z Tc,w (2)

These distributions give us the likelihood of a color condi-
tioned on a specific term or vice versa. We can also model
the association between two colors or between two terms.
Given a color c, the probability of other colors that have been
labeled with matching names (the categorical association of
a color [8]) is given by

p(Cle) =Y p(Clw)p(wlc) 3)

The categorical association between words p(W|w) is ex-
pressed in a symmetric manner:

p(Wlw) =Y p(Wle)p(c|w) )



Color Saliency

Given a probabilistic setting, we can use common measures
to quantify other aspects of color naming. We define color
saliency — the degree to which a color value is uniquely
named — in terms of the entropy of the conditional probabil-
ity p(W|c). Entropy (H) is a standard information-theoretic
measure of the “randomness” of a distribution. Specifically,
it measures the number of bits necessary to encode a random
variable. If a color is uniquely named by all respondents,
there is no randomness and p(W|c) will have an entropy of
zero. For colors with a high degree of naming disagreement,
p(W|c) will have a correspondingly higher entropy. We thus
express saliency in terms of the negative entropy:

Saliency(c) = —H (p(Wle)) = > p(wle) log p(wlc) (5)

Figure 2 shows the distribution of saliency scores for the
XKCD data. To create a normalized saliency measure, we
rescale the values from [-4.5, 0] to the interval [0,1].

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Figure 2. Histogram of XKCD Color Salience Scores.

Our formulation of saliency differs from that of prior work.
Chuang et al. [8] define saliency as the negative entropy of
the distribution p(C'|c), the categorical association between
colors. Using p(C'c) allows one to combine (often sparse)
color naming data from multiple languages into a unified
“term-free” distribution. However, their formulation mea-
sures the uniqueness of color names across the entire color
space, not at a single value. This occurs because the saliency
values are biased by the volume of color space spanned by
a name. If one shade of blue and one shade of yellow are
both uniquely named (e.g., 100% of responders call color 1
“blue” and call color 2 “yellow”) the yellow shade will re-
ceive a higher saliency value. This is because “yellow” oc-
cupies a smaller volume of color space and hence has higher
p(Clw) values. To ensure saliency scores are comparable
across hues, we instead compute saliency using p(W|c).

Figure 1 shows the distribution of saliency scores across
L*a*b* color space, clipped to the sSRGB gamut. The saliency
scores appear to cluster, with local maxima corresponding to
the basic color terms identified by Berlin & Kay. These clus-
ters exhibit different shapes, lending credence to the use of
non-parametric models. We can also identify boundaries be-
tween color names. Note the region of low saliency between
green and blue. This area exhibits high naming confusion,
including the terms “teal”, “turquoise”, “green” and “blue.”
Note also the narrow “valley” between orange and red at L*
= 55. This fine-grained detail is visible due to the dense
sampling of responses in the XKCD data; sparse data would
require larger bin sizes and hence lost detail.

Name-Based Distance Measures

Our color naming model also enables new distance measures
among color values. In addition to metrics within a color
space, we can compare two colors by how similarly they are
named. One option is to use a metric defined specifically for
probability distributions, such as the Hellinger distance:

Dp(a,b) = (1 —Z\/p(w|a)p(w|b))o'5 (6)

Though not grounded in probabilistic semantics, another op-
tion is to compute the cosine of the angle between two dis-
tributions. Due to normalization, this is equivalent to the co-
sine among rows of the color-term count matrix 7". Denoting
the row vector of T for the color ¢ as T,, we have:

Ta . Tb
T T
Due to its simplicity and familiarity, we use the cosine metric
to measure name-distance between two colors in our subse-

quent applications. Using other metrics, such as Hellinger
distance, produces qualitatively similar results.

D.(a,b) =1—cos(T,,Tp) =1 — @)

APPLICATIONS OF COLOR NAMING MODELS

To demonstrate the utility of color naming models for graph-
ical interfaces, we present a series of novel applications: a
name-based color dictionary & thesaurus, name-based inter-
action techniques for selecting image regions, and an evalua-
tion tool for color palette design. The primary data structure
used in each of these applications is the color-term count
matrix 7', from which we can compute probabilities, color
salience, and color distance measures. We have implemented
each example as a browser-based web application, written in
JavaScript using the D3 (Data-Driven Documents) [6] frame-
work. Both the applications and our library of color model-
ing routines is freely available as open-source software at:
http://vis.stanford.edu/color—names.

Color Dictionary & Thesaurus

A simple and direct application of color naming models is
to look up the color values associated with a name (a dictio-
nary) and find other, related color terms (a thesaurus). Fig-
ure 3 shows our interface for these tasks. Users might work
with the interface to select colors (e.g., for graphic design)
or explore relationships among color names.

In response to a color term query, the interface displays the
most probable color values matching that color name. Next,
the thesaurus view lists related color names ranked by sim-
ilarity. The top of the list shows highly similar color names
(synonyms), whereas the bottom (not shown) lists opposed
color names (antonyms).

Dictionary. Given a color name, retrieving representative
color values is straightforward: we find the most probable
color values according to p(C|w). To select a single rep-
resentative color, we average the four most probable colors
(the four largest values of the p(C|w) distribution). We find
that this produces more helpful results than choosing only
the single most probable value, particularly for names corre-
sponding to bright, desaturated colors.


http://vis.stanford.edu/color-names

Color mediumblue

Similar Colors

cerulean
cornflowerblue
oceanblue
azure

seablue

Figure 3. Color dictionary showing the 16 most probable color values
for the query “mediumblue.” The thesaurus lists related color names
sorted according to p(query | name). Ties are broken by sorting rep-
resentative colors by their CIEDE2000 distance.

Thesaurus. To rank color names, we sort by the name-name
association probabilities p(W|w). We score each color name
by p(query | name), the probability of the query term given
the name. Empirically, we have found that this choice pro-
vides better results than p(name | query), which can priv-
ilege names with high marginal probability. For the query
term “mediumblue,” the name “purple” is ranked highly ac-
cording to p(name | query) because it is a common term.
Choosing terms that instead maximize the likelihood of the
query favors similar shades of blue (shown in Figure 3). The
sort order is determined by similarities in naming patterns,
which need not be the same as perceptual similarity among
representative colors. Again, a color name corresponds to a
variably sized distribution across a range of color values.

To break ties, we sort color names according to the percep-
tual (CIEDE2000) distance between representative colors.
As some color names have association probabilities of zero
(e.g., the hues yellow, orange, and red were never labeled
“blue”), sorting by perceptual distance ensures that color
antonyms align with opponent process theory: yellow is the
antonym of blue, green is the antonym of red, and so on.

Using Color Name Models for Image Editing

People in conversation regularly use color names to refer to
visual elements. Color name models can enable analogous
forms of reference in user interfaces, for example, within
image editors such as Adobe Photoshop or Illustrator. Here
we describe two techniques for name-based selection: color
name queries and a name-based magic wand selector.

Color Name Queries

To select image pixels matching a color name w, we simply
include those pixels with non-zero p(c|w) values. To control
the sensitivity of the selection, users can adjust a tolerance
parameter to set a minimum p(c|w) threshold. Users can
either type a color term query or interact with the image to
generate relevant suggestions. In response to a mouse-driven
selection, we show the most probable color names according
to p(Wlc). In the case of a single pixel, we use the corre-
sponding probability distribution. In the case of image re-
gions, we average the distributions for each pixel.

Figure 4 shows our image selection prototype. The left panel
displays an image and the right panel shows a list of sug-
gested color names. By default, the list contains the most
probable names for the entire image. The bottom panel in-
cludes a slider for adjusting selection tolerance (the p(c|w)
threshold). Clicking a pixel or dragging over a rectangu-
lar region updates the list to show the most probable color
names for those pixels. A user can page through each name-
based selection using the up and down arrow keys. A user
can also type in a search query, initiating a selection and re-
vealing related color names based on our color thesaurus.

Figures 4-6 show the use of color name queries to isolate
image regions of interest. Figure 5 shows selections result-
ing from a variety of color name queries, including the use of
more specific, automatically suggested color names (“olive”,
“forestgreen” and “puke”) to select sub-regions of an initial,
general query (“green”). Figure 6 shows selections seeded
by direct manipulation: the user can click a pixel or drag a
region to view related color names and then page through
the results to find a desired selection.

A Name-Based Magic Wand Selector

A common selection mechanism within image editors is the
magic wand tool. Using the wand tool, a user first clicks a
desired pixel. The application then selects all adjacent pixels
within a specified color distance using a flood-fill algorithm.
Most wand tool implementations measure color distance as
the maximal absolute difference in the red, green, or blue
channels — the L., norm in RGB space. A tolerance param-
eter ranging from 0-255 controls the threshold distance.

Instead, we can use color naming distance — computed us-
ing the cosine of the angle between p(W|c) vectors —to de-
termine pixel similarity. Our implementation provides a tol-
erance parameter with range 0—-100, which maps to name-
based distances on the interval [0, 1].

Figure 7 compares selections from an RGB-based wand and
a name-based wand. The name-based selection better re-
spects color name boundaries and is more stable across a
range of tolerance settings. At low tolerance settings, RGB
distance fails to select a perceptually coherent brown region
due to color value variation; at higher tolerances the selec-
tion bleeds across color name boundaries, selecting adjacent
orange regions. In contrast, the color name wand selects the
brown region and excludes the orange pixels. To ensure that
this discrepancy is not simply due to the use of RGB space,
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Figure 6. Image regions selected by color name query. Non-selected pixels are shown in grayscale. The selected query terms were chosen from a list
of most probable colors for an image region selected by mouse-drag. In this case, a user can rapidly isolate flower, sky, and foliage pixels.
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The red circle indicates the input pixel to the magic wand.

trge = 60 (zoom-in)

tNames = 40 tNames = 40 (zoom-in)

tNames = 10

Figure 7. Magic wand pixel selections based on RGB distance (top row) and color name similarity (bottom row) across a range of parameter values.
The RGB selector misses pixels at low tolerance values (t=30) and includes orange and red hues at higher tolerance values (t=60). The color name
selector produces more uniform results across parameter settings and is sensitive to color name boundaries.

we also implemented a magic wand based on CIEDE2000
distance in L*a*b* space. We observed qualitatively simi-
lar results as the RGB-based selector: low tolerances lead to
under-selection and higher tolerances lead to color “bleed.”

Of course, not all name-based selections work so perfectly.
We observe that desaturated colors (e.g., pastels) have higher
name overlap, leading to less granular selections. Excluding
achromatic names (e.g., “grey”) may improve the situation.
In addition, we have combined color space and name-based
distances within a hybrid wand tool that selects either the
union or intersection of the two selection measures. This
hybrid tool uses two tolerance parameters (one for names,
one for color space) and enables more nuanced selections.

Evaluating Color Palette Designs

Color design experts [7, 34, 33] argue that attention to color
names is important in palette design, particularly for infor-
mation visualization. First, nameable colors facilitate com-
munication: it is easier to refer to graphical elements when
one can name them unambiguously. Second, experimental
evidence suggests that highly nameable colors are better re-
membered [29], perhaps due to the cue of the color name.
To inform color palette design, we use our model to quan-
titatively characterize palettes with respect to color naming.
To analyze a color palette, we examine both individual color
saliency scores and color name distances. This data can help
designers reason about the effects of color choices.

To optimize the presentation of categorical data, we might
seek to minimize name overlap (to avoid ambiguity) and
maximize salience (to avoid confusion and aid memory).
Figure 8 characterizes qualitative color palettes for encoding
categorical data. The palettes come from Tableau (a visual-
ization tool with palettes designed by a color specialist [33]),
the ColorBrewer selection tool [12], Microsoft Excel, and
The Economist magazine. Tables show color name distances

among colors, while bar charts show salience scores. These
metrics enable rapid comparison of the palettes. Tableau
and ColorBrewer both limit name overlap and include high-
salience colors. The Excel and Economist palettes, on the
other hand, exhibit high naming overlap and lower salience
colors. A designer can use these displays to evaluate differ-
ent color choices and assess questions such as: “If I shift the
cyan more towards green, will it change names?”

Figure 9 shows diverging palettes for numerical data with
a meaningful mid-point. The first palette, used in the Map
of the Market [38], naively ramps from red through black
to green in RGB space. The other three palettes come from
ColorBrewer. We note that the Map of the Market palette
has significant name overlap on each ramp, while the Col-
orBrewer palettes show more naming variation. In displays
such as choropleth maps, simultaneous contrast can ham-
per subtle luminance comparisons [34]. By including small
shifts in color hue and naming, the ColorBrewer palettes
may improve discrimination. Yet by making the shifts sub-
tle, the colors are still perceived as a ramp. ColorBrewer
palettes also exhibit salience gradients oriented toward ex-
treme values, emphasizing greater deviation from the mid-
point through both luminance and categorical salience.

While informative for human designers, these metrics might
also improve automated design tools, for example by mini-
mizing name overlap and increasing saliency. Of course, ef-
fective color design involves many concerns, including other
contrast effects and cultural associations. In future work, we
plan to apply our naming model to automatically optimize
color palette design and evaluate the results.

DISCUSSION

In this paper, we presented a method of constructing a prob-
abilistic model of color naming from large, unconstrained
naming data sets. We described a model based on over 3 mil-
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Figure 8. Name-based characterization of qualitative color palettes. Matrices show all pairwise color-name distances; bar charts show salience scores
for each color. Salience scores below 0.2 indicate colors with a high degree of naming confusion. The Tableau-10 palette provides the best color
salience and minimal name overlap. Palettes from Excel and The Economist exhibit higher name overlap and diminished saliency.
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Figure 9. Name-based characterization of diverging quantitative color palettes. Naive interpolation in RGB space (as in the Map of the Market) leads
to name overlap among non-adjacent colors. ColorBrewer palettes (excluding “‘teal”’) exhibit salience gradients towards the extreme values.

lion web survey responses —to our knowledge the largest
color naming data set in existence — and showed how it can
be used to map between colors and names, calculate color
saliency, and measure color similarity based on naming pat-
terns. We then introduced a set of novel applications that
illustrate how color naming models can enhance graphical
user interfaces: a color dictionary & thesaurus, name-based
pixel selection techniques for image editing, and evaluation
aids for comparing color palette designs. Through these ex-
amples, we demonstrate that color naming models enable
users to express their intentions in new ways and offer de-
signers new avenues for assessing their designs.

Though our initial results are encouraging, some limitations
remain. All respondents in the XKCD survey were asked
to name colors shown against a white background, a design
decision that biases the results. Unsurprisingly, the region
of color space named “white” is small, as respondents were
presumably sensitive to background contrast for high lumi-
nance colors, naming nearby colors “offwhite”, “cream”, or
“light grey.” The term “black,” on the other hand, occu-

pies a larger volume. Future large-scale surveys might vary
the background color among black, white, and one or more
shades of grey to construct color naming models more sensi-
tive to background contrast. Alternatively, automated meth-
ods (e.g., using image search engines [30, 36]) might be used
to refine color name regions.

While our approach uses CIE L*a*b* color space, recent
work in color science concerns color appearance models.
These models incorporate contrast effects due to background
and surround regions. Though unable to predict all the intri-
cate effects of human color vision, a color appearance model
such as CIECAMO2 [23] might associate colors with names
while taking contrast into account. Future research is needed
to assess the potential benefits and determine if the addi-
tional modeling complexity is warranted.

Our current work uses an English-language color naming
data set. In subsequent work we would like to construct color
naming models across a variety of languages (c.f., [26]).
Multi-lingual color naming data can enable scientific inves-



tigation of linguistic differences in color naming, for ex-
ample to verify basic color terms and assess differences in
color name boundaries and saliencies. Cross-language mod-
els would support internationalization of color name-based
applications and could potentially lead to culturally sensitive
color transfer or gamut mapping methods.

We developed our applications through a design exploration
of how color naming models might significantly enhance
user interfaces. The goal of this process was to establish the
utility of color naming models and develop new techniques.
We believe that each application provides novel support for
real-world tasks and initial feedback from informal usage
has been positive. Users have expressed appreciation for the
applications (including requests for the software) and have
suggested interesting use cases. For example, one person
used name-based pixel selection to analyze a series of art
works and “deconstruct” the coloring choices of the artist.

However, we do not claim that these applications are “fin-
ished.” Further design iteration and end-user evaluation will
undoubtedly refine these applications and inform how they
could be incorporated into existing tools and workflows. To
facilitate future work, our color naming model and applica-
tions are available as open-source software, downloadable
from http://vis.stanford.edu/color—names.
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