
Tableau on SAP HANA:
Performance Tracing and Workload Analysis

Contents
Introduction: Purpose & prerequisites..3

Overview of SAP HANA runtime traces & statistics...................................4

End-to-end single execution trace:
Combining Tableau & SAP HANA performance statistics..........................6

	 Activating SAP HANA’s SQL Trace..6

	 Activating Tableau’s Performance Recorder..7

	 Analyzing the information from the Tableau
	 Performance Workbook & HANA SQL Trace..9

Monitoring:
Identify long-running & memory-intensive SQL queries........................... 12

	 Enhancing SAP HANA’s session information
	 through Tableau’s Initial SQL... 12

	 Expensive Statements Trace:
	 Monitoring long-running & memory-intensive queries........................ 15

		 Analyzing SAP HANA Expensive Statement
		 Trace results in Tableau.. 17

	 SQL Plan Cache statistics: Identify optimization candidates
	 (long-running & frequently executed)... 18

		 Analyzing the SAP HANA SQL Plan Cache in Tableau.................... 20

Analyze single SQL queries in detail:

	 SAP HANA Explain Plan & Visualize Plan.. 21

	 SAP HANA Plan Explanation.. 21

	 SAP HANA Plan Visualizer...22

Conclusion..24

About Tableau..24

3Tableau on SAP HANA: Performance Tracing and Workload Analysis

Introduction: Purpose & prerequisites

Performance and stability are critical for the successful implementation of

Tableau dashboards on SAP HANA live data sources. To achieve the best possible

performance, it is important to analyze the dashboard runtime during the design

process and continuously monitor the system for expensive queries thereafter.

The purpose of this document is to give an overview of the performance tracing

and monitoring capabilities in SAP HANA and Tableau to identify performance

bottlenecks. This understanding is a prerequisite for identifying suitable

performance optimization measures. Recommendations on how to design efficient

Tableau dashboards are not part of the scope—these can be found in separate

resources, e.g. Designing Efficient Workbooks (whitepaper), and Best Practices for

Dashboard Performance (recorded presentation).

In order to activate the SAP HANA traces mentioned in this document, sufficient

authorizations or the help of an SAP HANA admin are required. Additionally, a

Tableau Creator (e.g. analyst or dashboard designer) will be required for collecting

the front-end runtimes measured by Tableau. When combined, these Tableau and

SAP HANA traces provide the full end-to-end runtime distribution. These traces

provide information needed to identify performance bottlenecks which are great

candidates for performance optimizations.

While it is recommended that detailed end-to-end traces only be performed for

single executions (due to its resource consumption overhead), there are other traces

for continuous performance and workload monitoring that can identify expensive

queries. To avoid bottlenecks during high-load situations, it is important to be

able to analyze and identify the source of expensive (CPU runtime and memory

consumption) and dominant (runtime multiplied by execution count) queries. SAP

HANA can be configured to collect these statistics and Tableau can connect to them

for analysis.

When a long-running or memory intensive SQL statement has been singled out,

its processing inside HANA can be further analyzed by using tools such as the SAP

HANA Plan Explanation or SAP HANA Plan Visualizer. These tools provide detailed

step-by-step information on how the query result is being calculated and which

processing steps are costly. This understanding can help identify optimization

strategies such as applying filters earlier, aggregating at a different level, etc.

https://www.tableau.com/learn/whitepapers/designing-efficient-workbooks
https://www.youtube.com/watch?v=D2dzCp9CBy0
https://www.youtube.com/watch?v=D2dzCp9CBy0

4Tableau on SAP HANA: Performance Tracing and Workload Analysis

Overview of SAP HANA runtime traces & statistics

Expensive Statements Trace

The Expensive Statements Trace is capturing information about SQL statements

whose execution time exceeded a configured threshold. The threshold is entered in

microseconds (μs), which means in millionths of a second.

The trace can be used in different ways. It can record practically all queries when the

threshold is set to 1, but this setting should only be used for a limited duration where

a dedicated performance analysis is required. However, when setting the threshold

to a higher value, e.g. 5 seconds (5,000,000 μs), it can remain activated permanently.

SAP Note 2180165 (FAQ: SAP HANA Expensive Statements Trace) states, “Due to the

significant added value and the small overhead (in case of reasonable thresholds) it is

recommended to activate this trace on a permanent basis”.

Another advantage of this trace is that it allows flexible analysis of its records as

its results can be retrieved by selecting from a SAP HANA view (‘M_EXPENSIVE_

STATEMENTS’ in schema ‘SYS’). This means Tableau’s powerful analytical

capabilities can be used to analyze the Expensive Statements recorded in SAP HANA.

Due to the mentioned advantages (can remain permanently active and can be queried

using SQL), the Expensive Statements Trace was chosen to be described in more

detail in the next chapter.

SQL Trace

While the Expensive Statements Trace can remain permanently activated for

performance monitoring purposes, SAP HANA also offers a trace for the purpose

of dedicated performance analysis—capturing all SQL queries and their runtime

statistics while activated (typically for a dedicated user and short amount of time).

Because of this high level of detail, the SQL Trace consumes more resources (storage

and CPU) and should only be activated for short-term, explicit performance analysis

(instead of long-term monitoring).

The SQL Trace is writing the information it collects to a .py text file instead of a

database table. While this file type has the advantage of being able to replay the

traced database operations, it is difficult to read and analyze traced performance

information. To address this issue, SAP offers a python tool, SAP HANA SQL Trace

Analyzer, to aggregate the information from the file and to simplify its analysis.

For an example of how
the trace result looks like

and how the SQL Trace
Analyzer tool works, see

this video from SAP HANA
Academy demonstrating

how to use the SAP HANA
SQL Trace Analyzer.

https://launchpad.support.sap.com/#/notes/2180165
https://www.youtube.com/watch?v=FvzN89vwcho
https://www.youtube.com/watch?v=FvzN89vwcho

5Tableau on SAP HANA: Performance Tracing and Workload Analysis

SQL Plan Cache

The SQL Plan Cache is a valuable tool for understanding the SQL processing of the

SAP HANA database. As it is not a trace, but a cache that is activated per default, the

SQL Plan Cache collects valuable statistics without the need to explicitly switch it on.

The SQL Plan Cache provides an overview of the statements that are frequently

executed in the system and tracks runtime statistics. These statistics are aggregated

so they don’t reveal runtime information of specific dashboard executions, but they

can be used to identify candidates for optimization—e.g. most frequently executed

queries, longest running queries, etc. The SQL Plan cache can be queried as an SAP

HANA View so Tableau can be used for its analysis.

Enabling SAP HANA Memory Tracking

Some SAP HANA traces allow capturing the memory consumption of SQL

statements in addition to performance KPIs. This can be valuable information when

analyzing out of memory situations or trying to identify users that heavily consume

the database’s memory. To enable the tracking of memory usage, the following two

parameters in the global.ini file [resource_tracking] section must be set to ‘on’:

	 • enable_tracking

	 • memory_tracking

6Tableau on SAP HANA: Performance Tracing and Workload Analysis

End-to-end single execution trace:
Combining Tableau & SAP HANA performance statistics

To understand a Tableau workbook’s runtime distribution, it is recommended to

trace the performance on both the Tableau and the database side—end to end.

This will allow for conclusions to be drawn on which layer most of the runtime

is spent (Tableau, Network, HANA) and which steps are slowing down the

overall execution. This will help identify those steps with the most potential for

performance optimization.

Activating SAP HANA’s SQL Trace

As a first step, SAP HANA’s SQL Trace needs to be activated for the database

user that is executing the trace. This ensures that all incoming SQL queries from

that user, including their runtime information, are captured. One method to

activate this trace is to set it in SAP HANA Studio in the ‘Administration’ > ‘Trace

Configuration’ section.

To enable the trace, set the Trace Status to ‘Active’ and use the Trace Level ‘ALL’

or ‘ALL_WITH_RESULTS’. The Trace File field allows you to specify the name

of the trace file that gets generated. Additionally, the Database User should be

filtered to the user who is executing the Tableau workbook.

End-to-end analysis involves

temporarily activating traces on

both the Tableau and SAP HANA

side and should only be executed

for single executions instead of a

continuous monitoring.

For a detailed description of

the SQL Trace configuration,

see SAP Note 2031647 (How

to enable SQL Trace in SAP

HANA Studio).

https://launchpad.support.sap.com/#/notes/2031647
https://launchpad.support.sap.com/#/notes/2031647
https://launchpad.support.sap.com/#/notes/2031647

7Tableau on SAP HANA: Performance Tracing and Workload Analysis

Activating Tableau’s Performance Recorder

To record the runtime distribution on the Tableau side, a Tableau performance trace

can be used.

Tableau Desktop

When using Tableau Desktop, the performance trace is started by clicking on:

Help > Settings and Performance > Start Performance Recording

Every step performed in Tableau will be recorded as part of the performance trace now.

To stop recording and view a temporary workbook containing results from the

recording session, click the same button again (now it’s named ‘Stop Performance

Recording’):

Help > Settings and Performance > Stop Performance Recording

As a result, a Tableau workbook will be generated that contains the traced information.

Using ‘File’ > ‘Save as’ this workbook can be stored for future reference.

For a detailed description of the Tableau Desktop Trace activation, see Record and

Analyze Workbook Performance in Tableau Help.

https://help.tableau.com/current/pro/desktop/en-us/perf_record_create_desktop.htm
https://help.tableau.com/current/pro/desktop/en-us/perf_record_create_desktop.htm

8Tableau on SAP HANA: Performance Tracing and Workload Analysis

Tableau Server

When using Tableau Server, the performance trace is started by adding ‘:record_

performance=yes&’ at the end of the view URL.

Example: View URL

Example: View URL with enabled performance tracing:

To view the performance recording from Tableau Server, click the ‘Performance’ button.

To stop the performance trace, you can click to a different page or remove ‘:record_

performance=yes’ from the URL.

For a detailed description of the Tableau Server Trace activation, see Create a

Performance Recording in Tableau Help.

https://help.tableau.com/current/server/en-us/perf_record_create_server.htm
https://help.tableau.com/current/server/en-us/perf_record_create_server.htm

9Tableau on SAP HANA: Performance Tracing and Workload Analysis

Analyzing the information from the Tableau Performance Workbook

& HANA SQL Trace

The result of the Tableau performance trace is presented in the form of a Tableau

workbook.

The ‘Performance Summary’ dashboard gives an overview of the timeline of the

performed steps and the chart at the bottom sorts the events by runtime.

In order to focus on the most important events, it is recommended to remove the

noise by filtering for events taking at least 0.5 seconds.

The Timeline sheet can be adjusted to reveal additional information. For example,

the ‘Elapsed Time’ can be added as Label, the ‘Start Index’ can be dragged to be the

first field in rows (which sorts the actions by start time) and ‘Activity Name’ can be

added to the rows.

10Tableau on SAP HANA: Performance Tracing and Workload Analysis

The result will look similar to this:

In this case, the majority of the runtime is spent executing queries. ‘Executing Query’ is the

time that Tableau is waiting for a query response from SAP HANA, including the time for

transporting the response through the network.

In order to identify the complete SQL statement that corresponds to an ‘Executing Query’

event, the event can be selected in the Performance Summary. This will filter the Query

sheet to display the SQL command from that event.

The Tableau workbook sheet will have too little space to display the statement, but it can be

selected and copied into a text editor for full display.

After having identified which work sheets and queries consume most of the

runtime, this information can be combined with the HANA SQL Trace.

11Tableau on SAP HANA: Performance Tracing and Workload Analysis

After executing SAP’s SQL Trace Analyzer (see SAP Note 2412519 FAQ: SAP HANA

SQL Trace Analyzer) on the trace file, the output will reveal runtime information for

each SQL query in HANA—including the execution, compilation, cursor and fetch

runtimes. This information is displayed in microseconds so a division by 1,000,000

will convert it to seconds.

A comparison between the SQL statement runtimes in HANA and the corresponding

‘Executing Query’ runtimes in Tableau can provide valuable insight. If there is a large

gap, it might be related to the network speed or a firewall between the HANA server

and the Tableau front-end.

If the runtime of a SQL query in HANA is large, there are multiple ways to address

this. For example:

	 - �Check if the query can be simplified by redesigning the Tableau worksheet.

	 - �Check if the HANA data model can be optimized for the query (see the

HANA Plan Explanation and HANA Plan Visualization section of this

document).

If the SQL execution plan compilation time in SAP HANA is large or even larger

than the query execution, it is a hint that Tableau’s bind variable feature should

be activated. This capability can increase the hit rate of the SQL plan cache and

consequently reduces the need for compiling SQL execution plans.

If there is a long running SQL query that ends with ‘HAVING (COUNT(1) > 0)’, there is

a TDC setting (‘CAP_QUERY_HAVING_REQUIRES_GROUP_BY’) which replaces this

condition with a ‘GROUP BY’ statement when enabled. This setting has dramatically

reduced the SQL query runtime in certain use cases.

These are some examples of findings that can be made by analyzing the Tableau

traces combined with SAP HANA traces.

https://launchpad.support.sap.com/#/notes/2412519
https://launchpad.support.sap.com/#/notes/2412519
https://kb.tableau.com/articles/howto/enabling-bing-variable-for-hana

12Tableau on SAP HANA: Performance Tracing and Workload Analysis

Monitoring:
Identify long-running & memory-intensive SQL queries

SAP HANA provides various traces, logs, and statistics that contain valuable

information for performance analysis and monitoring. For example, when high load

resource bottlenecks occur, they can be used to identify performance optimization

candidates and/or perform root cause analysis.

Unfortunately, it can be difficult to identify which information from these logs are

related to Tableau queries, or even a particular Tableau workbook or sheet.

To track this information for Tableau queries, Tableau’s Initial SQL feature can

be very helpful. It extends the possibilities to analyze Tableau workload and

performance in SAP HANA by making use of SAP HANA session variables. Together

with information from SAP HANA logs, e.g. the Expensive Statements Trace or the

SQL Plan Cache, this creates new possibilities for SAP HANA admins and Tableau

workbook designers.

Enhancing SAP HANA’s session information through Tableau’s Initial SQL

When a new connection to SAP HANA is made, a new session is established in the

SAP HANA Session Management. It maintains information regarding the source of

the session and technical information which are used by SAP HANA for traces and

statistical data.

Examples for pre-defined session variables are APPLICATION,

APPLICATIONVERSION, APPLICATIONUSER, and APPLICATIONSOURCE. A complete

list of the predefined session variables and their uses can be found in the SAP HANA

SQL and System Views Reference.

When Tableau connects to SAP HANA, some session variables (e.g. APPLICATION and

APPLICATIONVERSION) are automatically assigned by Tableau. This capability helps

separate Tableau queries and/or workload from other applications/tools. Tableau’s

Initial SQL feature can be used to assign additional session variables to store

information; such as the Tableau Workbook Name or Tableau Server User. Initial

SQL is a set of SQL commands defined on the data source level that will be executed

when a database connection is made, e.g. when a workbook is opened or data is

being refreshed.

https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.05/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.05/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.tableau.com/current/pro/desktop/en-us/connect_basic_initialsql.htm

13Tableau on SAP HANA: Performance Tracing and Workload Analysis

In this example, we will use APPLICATIONSOURCE to submit the name of the

Tableau workbook that established the connection and APPLICATIONUSER to

identify the Tableau User who is running the query.

In order to set the Initial SQL, the Data Source tab needs to be opened and in the

Data menu, the SAP HANA data source needs to be selected:

The Syntax for setting or overwriting session variables is as follows:

SET [SESSION] <variable_string_literal> = <value_string_literal>

As an example, the following commands can be used in the Initial SQL to store

the Tableau application, version, and workbook name in the SAP HANA session

variables:

SET SESSION ‘APPLICATIONSOURCE’ = [WorkbookName];

SET SESSION ‘APPLICATIONUSER’ = [TableauServerUser];

14Tableau on SAP HANA: Performance Tracing and Workload Analysis

To check whether the Initial SQL providing the information you expect, the session

variables can be retrieved by querying the M_SESSION_CONTEXT system view (e.g.

‘select * from M_SESSION_CONTEXT’).

As a result, SAP HANA admin tools like the Session Monitoring or the Expensive

Statements Trace will display information about the source of the session that

previously was not available.

a) Session Monitoring:

b) Logs and traces:

15Tableau on SAP HANA: Performance Tracing and Workload Analysis

Expensive Statements Trace: Monitoring long-running & memory-

intensive queries

SAP HANA offers the possibility to trace SQL statements whose execution time

exceeds a configured threshold. This widely used feature is called Expensive

Statement Trace and is typically used to identify queries that need performance

optimization.

If the SAP HANA session variables are not assigned in Tableau’s Initial SQL, it can be

difficult to find out which of the long-running SQL statements come from Tableau

(depends on the Tableau version used), and more importantly, which Tableau

workbook caused the query.

After assigning the session variables in Tableau’s Initial SQL, this gets much easier.

When we configure the trace, it is possible to restrict it not only on the user level

but also on the application level. It is important to pay attention to the Threshold

Duration (in microseconds: 1 μs = one millionth of a second). If only long running

queries should be traced, this value should be high (default is 1,000,000). But if all or

most Tableau queries should be traced, it can be set to a much lower value (e.g. 1,000

for 1 ms).

16Tableau on SAP HANA: Performance Tracing and Workload Analysis

After the trace has finished, a select on the Expensive Statements view, including a

filter on the APPLICATION_NAME column, will return those statements that

originated in Tableau.

select * from M_EXPENSIVE_STATEMENTS where APPLICATION_NAME like

‘%Tableau%’

The result set contains valuable information for each database operation—among

others: User name, Workbook name, SQL statement, Start time, Duration (in

microseconds), affected DB tables, and number of records. This query can be

further restricted to certain users, workbooks, start time, etc. in the ‘where’ clause.

The following information may be particularly useful:

	 • The type of operation during the statement execution (OPERATION)

	 • When the query started (START_TIME)

	 • How long the query took (DURATION_MICROSEC)

	 • The CPU time (in microseconds) to compute the statement (CPU_TIME)

	 • Name(s) of the objects accessed (OBJECT_NAME)

	 • The SQL statement (STATEMENT_STRING)

	 • �Peak memory usage (in bytes) during the execution of the statement

(MEMORY_SIZE)

A few important operation types that are recorded include:

Operation Description
AGGREGATED_EXECUTION Overall execution time of an individual database request

CALL Execution time of procedure calls

COMPILE Preparation /parse time

CURSOR_CLOSE Cursor closing time

FETCH Fetch time

17Tableau on SAP HANA: Performance Tracing and Workload Analysis

Operation Description
SELECT, INSERT, UPDATE, DELETE Execution time of corresponding operation

An example of an Expensive Statements Trace result:

Analyzing SAP HANA Expensive Statement Trace results in Tableau

Tableau can be used for analyzing the results of the Expensive Statements Trace.

To achieve this, a connection to the ‘M_EXPENSIVE_STATEMENTS’ view in

schema ‘SYS’ needs to be established. In order to filter for only those statements

that are triggered by Tableau, a data source filter can be used (e.g. a Wildcard filter

18Tableau on SAP HANA: Performance Tracing and Workload Analysis

for Tableau on the APPLICATION_NAME Dimension).

An example dashboard for analyzing expensive queries:

SQL SQL Plan Cache statistics: Identify optimization candidates

(long-running & frequently executed)

The SQL Plan Cache is a valuable tool for understanding the SQL processing of the

SAP HANA database. It gives an overview of the statements that are executed in

the system and tracks statistics like execution runtimes. As it offers an insight into

frequently executed queries and slow queries, it can be used to identify candidates

for optimization—without the need to activate a dedicated trace. The SQL Plan Cache

can be queried as an SAP HANA View resulting in the ability to use Tableau for the

analysis of this information.

Before a SQL statement is executed in SAP HANA, it is compiled to a plan. Once a plan

has been compiled, it is better to re-use the plan the next time the same statement

is executed rather than compiling a new plan every time. In SAP HANA, the SQL

Plan Cache stores plans generated from previous executions. Additionally, it keeps

19Tableau on SAP HANA: Performance Tracing and Workload Analysis

statistics about each plan for monitoring purposes. This allows for you to analyze the number of executions, min/

max/total/average runtime, lock/wait statistics, and more.

The following information may be particularly useful:

	 • Dominant statements (TOTAL_EXECUTION_TIME)

	 • Long-running statements (AVG_EXECUTION_TIME)

	 • Frequently executed plans (EXECUTION_COUNT)

	 • Number of records returned (TOTAL_RESULT_RECORD_COUNT)

20Tableau on SAP HANA: Performance Tracing and Workload Analysis

SAP Note 2000002 (FAQ: SAP HANA SQL Optimization) gives additional information

how the runtime statistics in the SQL Plan Cache can be interpreted. For example,

the operations are broken down into the following actions:

Operation Description

CURSOR

Contains the overall cursor time including SAP HANA server
time and client time; If the client performs other tasks between
fetches of data, the cursor time can be much higher than the
SAP HANA server time.

EXECUTION
Contains the execution time (open + fetch + lock wait + close)
on SAP HANA server side, does not include table load and
preparation time.

EXECUTION_OPEN
Contains the open time on SAP HANA server side;
Includes the actual retrieval of data in case of column store
accesses with early materialization.

EXECUTION_FETCH
Contains the fetch time on SAP HANA server side;
Includes the actual retrieval of data in case of row store accesses
or late materialization.

EXECUTION_CLOSE Contains the close time on SAP HANA server side.

TABLE_LOAD
Contains the table load time during preparation, is part of the
preparation time.

REPARATION Contains the preparation time.

LOCK_WAIT
Contains the transaction lock wait time, internal locks are not
included.

For a guide on how to read the SQL Plan Cache, see SAP Help’s page Example:

Reading the SQL Plan Cache.

Recommendations concerning the analysis of the SQL Plan Cache can be found at

SAP Help’s page SQL Plan Cache Analysis.

https://launchpad.support.sap.com/#/notes/2000002
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.00/en-US/c44c125ed4ae467a903cf4bb8527facb.html
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.00/en-US/c44c125ed4ae467a903cf4bb8527facb.html
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.00/en-US/a6c880a896cc41d7b02aff472d11b242.html

21Tableau on SAP HANA: Performance Tracing and Workload Analysis

Analyzing the SAP HANA SQL Plan Cache in Tableau

Tableau can be used for analyzing the results of the SQL Plan Cache. To achieve

this, an SAP HANA connection to the ‘M_SQL_PLAN_CACHE’ view in schema ‘SYS’

needs to be established. In order to filter for only those statements that are triggered

by Tableau, a data source filter can be used (e.g. a Wildcard filter for Tableau on the

APPLICATION_NAME Dimension).

An example visualization could include the execution count and the average overall
runtime with the average distribution of the runtime:

22Tableau on SAP HANA: Performance Tracing and Workload Analysis

Analyze single SQL queries in detail:
SAP HANA Explain Plan & Visualize Plan

After having identified long-running queries using the Expensive Statements Trace

or the SQL Plan Cache statistics, the next step is finding out why the execution takes

so much time.

To identify the root cause of the runtime, it is beneficial to understand how SAP

HANA handles the SQL Statement execution. The ‘Explain Plan’ and ‘Visualize Plan’

features in SAP HANA are two ways to investigate this.

The easiest way to execute either of these is to copy the statement into the SQL

Console and choose either ‘Explain Plan’ or ‘Visualize Plan’ in the context menu.

More detail on each feature is explained in the next two sections.

SAP HANA Plan Explanation

After generating a plan explanation for a SQL statement, the result will show
detailed information on the query execution and the database operations involved
during the processing.

23Tableau on SAP HANA: Performance Tracing and Workload Analysis

Some of the key values are described briefly here and in the examples which follow,

refer to the EXPLAIN_PLAN_TABLE system view in the SAP HANA SQL and System

Views Reference for full details.

Area Detail

Operation details

The OPERATOR_NAME value shows the type of operation which
was executed, such as joins, unions, aggregations and so on.
Operations depend on the engine used—essentially row engine
or column engine. Dependencies are shown by indentation—see
examples below.

Engine
The type of engine where an operator is executed is shown in the
EXECUTION_ENGINE column: ROW, COLUMN, OLAP, HEX, ESX.

Table details
Table details include table name, type, size, tables, or objects
which were accessed.

Estimated cost
Cost values include the estimated output row count (OUTPUT_
SIZE) and the estimated time in seconds (SUBTREE_COST).

Examples of how the Explain Plan results can be interpreted are described on the

following pages:

	 • Analyzing SQL Execution with the Plan Explanation

	 • SAP HANA SQL and System Views Reference: Explain Plan Statement

SAP HANA Plan Visualizer

The SAP HANA Plan Visualizer allows for graphically analyzing the SQL execution

plan. This makes it easier to understand the steps involved in the processing and

how the amount of records and runtime develops over time.

The runtime is given as “Exclusive” (the execution time of the node) and “Inclusive”

(the execution time including the descendent nodes) values.

https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.05/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.05/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.04/en-US/c0d42fd3bb571014a0688254f3de593f.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.05/en-US/20d9ec5575191014a251e58ecf90997a.html

24Tableau on SAP HANA: Performance Tracing and Workload Analysis

The Plan Visualizer offers additional views, e.g. a Timeline View and a Network

View for the analysis. More information on those can be found in the SAP HANA

Troubleshooting and Performance Analysis Guide in the chapter Analyzing SQL

Execution with the Plan Visualizer.

Additionally, SAP released several blogs with instructions on how to use the PlanViz:

	 • The HANA PlanVisualizer (PlanViz) – Quick and Easy

	 • Analyzing SQL Execution with the Plan Visualizer (PlanViz)

https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.04/en-US/c1f281fbbb571014aaf38a264c0e12c4.html
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.04/en-US/c1f281fbbb571014aaf38a264c0e12c4.html
https://blogs.sap.com/2019/03/15/the-hana-planvisualizer-planviz-quick-and-easy/
https://blogs.sap.com/2018/04/29/analyzing-sql-execution-with-the-plan-visualizer-planviz/

Once the bottlenecks in the SAP HANA query processing have been identified,

they should be addressed. For more information about performance optimization

possibilities in SAP HANA Calculation Views, refer to the Optimization Features in

Calculation Views chapter of the SAP HANA Performance Guide for Developers and

SAP’s knowledge base article 2000002 (FAQ: SAP HANA SQL Optimization).

In order to change the SQL query that Tableau sends to SAP HANA, a re-modeling

of the dashboard in Tableau needs to be considered. Best practices for dashboard

performance can be found in these resources: Designing Efficient Workbooks and

Best practices for dashboard performance.

Conclusion

In order to understand the performance of a Tableau on SAP dashboard, use several

traces on the Tableau side and SAP HANA side.

For optimizing a single dashboard, an end-to-end execution trace combining

Tableau’s Performance Recorder and SAP HANA’s SQL Trace is recommended. This

will reveal how the runtime is distributed across the execution steps and processing

layers and help uncover bottle necks.

For long-term performance monitoring, the SAP HANA Expensive Statements Trace

is most suitable as it is generating minimal overhead and can remain permanently

activated.

Once long-running or memory intensive SQL queries have been identified, they

can be further analyzed using SAP HANA’s Plan Explanation or Plan Visualizer for

understanding the DB execution steps and their runtime impacts.

About Tableau
Tableau is a complete, integrated, and enterprise-ready visual analytics platform

that helps people and organizations become more data driven. Whether on-

premises or in the cloud, on Windows or Linux, Tableau leverages your existing

technology investments and scales with you as your data environment shifts and

grows. Unleash the power of your most valuable assets: your data and your people.

https://help.sap.com/viewer/9de0171a6027400bb3b9bee385222eff/2.0.05/en-US/eb0b9e30200245a889fdf3b5bf5367de.html
https://help.sap.com/viewer/9de0171a6027400bb3b9bee385222eff/2.0.05/en-US/eb0b9e30200245a889fdf3b5bf5367de.html
https://launchpad.support.sap.com/#/notes/2000002
https://www.tableau.com/learn/whitepapers/designing-efficient-workbooks
https://www.youtube.com/watch?v=D2dzCp9CBy0

